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1

1 Introduction to contributing

This chapter presents a quick overview of ways that people can help LilyPond.

1.1 Help us

We need you!

Thank you for your interest in helping us — we would love to see you get involved! Your
contribution will help a large group of users make beautifully typeset music.

Even working on small tasks can have a big impact: taking care of them allows experienced
developers work on advanced tasks, instead of spending time on those simple tasks.

For a multi-faceted project like LilyPond, sometimes it’s tough to know where to begin. In

addition to the avenues proposed below, you can send an e-mail to the lilypond-devel@gnu.org

(https://lists.gnu.org/mailman/listinfo/lilypond-devel) mailing list, and we’ll help

you to get started.

Simple tasks

No programming skills required!

• Mailing list support: answer questions from fellow users.

• Bug reporting: help users create proper Section “Bug reports” in General Information,
and/or join the Bug Squad to organize Section “Issues” in Contributor’s Guide.

• Documentation: small changes can be proposed by following the guidelines for Section
“Documentation suggestions” in Contributor’s Guide.

• LilyPond Snippet Repository (LSR): create and fix snippets following the guidelines in
Section “Adding and editing snippets” in Contributor’s Guide.

• Discussions, reviews, and testing: the developers often ask for feedback about new docu-
mentation, potential syntax changes, and testing new features. Please contribute to these
discussions!

Advanced tasks

These jobs generally require that you have the source code and can compile LilyPond.
☛ ✟

Note: We suggest that contributors using Windows or MacOS X do
not attempt to set up their own development environment; instead, use
Lilydev as discussed in Section “Quick start” in Contributor’s Guide.
✡ ✠

Contributors using Linux or FreeBSD may also use Lilydev, but if they prefer their own
development environment, they should read Section “Working with source code” in Contributor’s

Guide, and Section “Compiling” in Contributor’s Guide.

Begin by reading Section “Summary for experienced developers” in Contributor’s Guide.

• Documentation: for large changes, see Section “Documentation work” in Contributor’s

Guide.

• Website: the website is built from the normal documentation source. See the info about
documentation, and also Section “Website work” in Contributor’s Guide.

• Translations: see Section “Translating the documentation” in Contributor’s Guide, and
Section “Translating the website” in Contributor’s Guide.

• Bugfixes or new features: read Section “Programming work” in Contributor’s Guide.

https://lists.gnu.org/mailman/listinfo/lilypond-devel
https://lists.gnu.org/mailman/listinfo/lilypond-devel
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1.2 Overview of work flow

Advanced note: Experienced developers should skip to Section 1.3 [Summary for
experienced developers], page 2.

Git is a version control system that tracks the history of a program’s source code. The
LilyPond source code is maintained as a Git repository, which contains:

• all of the source files needed to build LilyPond, and

• a record of the entire history of every change made to every file since the program was born.

The ‘official’ LilyPond Git repository is hosted by the GNU Savannah software forge at
http://git.sv.gnu.org.

Changes made within one contributor’s copy of the repository can be shared with other
contributors using patches. A patch is a text file that indicates what changes have been made.
If a contributor’s patch is approved for inclusion (usually through the mailing list), someone on
the current development team will push the patch to the official repository.

The Savannah software forge provides two separate interfaces for viewing the LilyPond Git
repository online: cgit (http://git.sv.gnu.org/cgit/lilypond.git/) and gitweb (http://
git.sv.gnu.org/gitweb/?p=lilypond.git).

Git is a complex and powerful tool, but tends to be confusing at first, particularly for users not
familiar with the command line and/or version control systems. We have created the lily-git

graphical user interface to ease this difficulty.

Compiling (‘building’) LilyPond allows developers to see how changes to the source code
affect the program itself. Compiling is also needed to package the program for specific operating
systems or distributions. LilyPond can be compiled from a local Git repository (for developers),
or from a downloaded tarball (for packagers). Compiling LilyPond is a rather involved process,
and most contributor tasks do not require it.

Contributors can contact the developers through the ‘lilypond-devel’ mailing list. The mailing
list archive is located at http://lists.gnu.org/archive/html/lilypond-devel/. If you
have a question for the developers, search the archives first to see if the issue has already been
discussed. Otherwise, send an email to lilypond-devel@gnu.org. You can subscribe to the
developers’ mailing list here: http://lists.gnu.org/mailman/listinfo/lilypond-devel.

☛ ✟

Note: Contributors on Windows or MacOS X wishing to compile code
or documentation are strongly advised to use our Debian LilyPond De-
veloper Remix, as discussed in Chapter 2 [Quick start], page 5.
✡ ✠

1.3 Summary for experienced developers

If you are already familiar with typical open-source tools, here’s what you need to know:

• source repository: hosted by GNU savannah.

http://git.savannah.gnu.org/gitweb/?p=lilypond.git

• issue tracker: currently hosted by Sourceforge.

https://sourceforge.net/p/testlilyissues/issues/

• patch review: Rietveld – the collaborative code review tool.

https://codereview.appspot.com

• environment variables: many maintenance scripts, and many instructions in this guide rely
on predefined Section 14.2 [Environment variables], page 170.

• mailing lists: given on Section “Contact” in General Information.

http://git.sv.gnu.org
http://git.sv.gnu.org/cgit/lilypond.git/
http://git.sv.gnu.org/gitweb/?p=lilypond.git
http://git.sv.gnu.org/gitweb/?p=lilypond.git
http://lists.gnu.org/archive/html/lilypond-devel/
mailto:lilypond-devel@gnu.org
http://lists.gnu.org/mailman/listinfo/lilypond-devel
http://git.savannah.gnu.org/gitweb/?p=lilypond.git
https://sourceforge.net/p/testlilyissues/issues/
https://codereview.appspot.com


Chapter 1: Introduction to contributing 3

• Git branches:

• master: always base your work from this branch, but never push directly to it. Patches
are always pushed directly to the staging branch instead.

• staging: always push to this branch after a successful patch review cycle (see below).

• translation: Translators should base their work on this branch only and push any
translation patches directly to it as well.

• dev/foo: feel free to push any new branch name under dev/.

• regression tests: also known as “regtests”. A collection of more than a thousand .ly files
that are used to track LilyPond’s engraving output between released stable and unstable
versions as well as checked for all patches submitted for testing.

If a patch introduces any unintentional changes to any of the regtests it is very likely it will
be rejected (to be fixed) – always make sure that, if you expect any regression test changes,
that they are explained clearly as part of the patch description when submitting for testing.
For more information see Chapter 9 [Regression tests], page 105.

• reviews: after finishing work on a patch or branch:

1. upload it with our custom git-cl ‘helper-script’; see Section 2.3 [git-cl], page 9. In
addition to uploading patches to the Google’s Rietveld code review tool the script will
also update the issue tracker (or add a new issue as appropriate) so that any reference
to the patch is not lost. The current “status” of any patch submitted is always managed
on the issue tracker; also see Chapter 8 [Issues], page 97.

Once submitted the patch will be given a status of Patch-new and will enter the “Patch
Countdown”. More information on this can be found in the section Section 3.3.6
[Uploading a patch for review], page 27.

2. Patches are generally tested within 24 hours of submission. Once it has passed the
basic tests – make, make doc and a make test-baseline/check –, the tracker will be
updated and the patch’s status will change to Patch-review for other developers to
examine.

3. Every third day, the “Patch Meister” will examine the issue tracker and the Rietveld
code review tool for the submitted patch, looking for any comments by other developers.
Depending on what has been posted, the patch will be either; “moved on” to the next
patch status (Patch-countdown); set back to Patch-needs_work; or if more discussion
is needed, left at Patch-review. In all cases the issue tracker (not the Rietveld code
review tool) will be updated by the Patch Meister accordingly.

4. Once another three days have passed, any patch that has been given Patch-countdown

status will be changed to Patch-push, the issue tracker is updated, and the developer
can now push it directly to the staging branch (or email the patch – created with
git format-patch command – to one of the other developers who can push it for
you).

5. Automatic scripts run every few hours to merge the staging branch with master.

Advanced note: This process does means that most patches will take about
a week before finally being merged into master. With the limited resources
for reviewing patches available and a history of unintended breakages in the
master branch (from patches that have not had time to be reviewed properly),
this is the best compromise we have found.

1.4 Mentors

We have a semi-formal system of mentorship, similar to the medieval “journeyman/master”
training system. New contributors will have a dedicated mentor to help them “learn the ropes”.



Chapter 1: Introduction to contributing 4

☛ ✟

Note: This is subject to the availability of mentors; certain jobs have
more potential mentors than others.
✡ ✠

Contributor responsibilities

1. Ask your mentor which sections of the CG you should read.

2. If you get stuck for longer than 10 minutes, ask your mentor. They might not be able to help
you with all problems, but we find that new contributors often get stuck with something
that could be solved/explained with 2 or 3 sentences from a mentor.

3. If you have been working on a task much longer than was originally estimated, stop and ask
your mentor. There may have been a miscommunication, or there may be some time-saving
tips that could vastly simply your task.

4. Send patches to your mentor for initial comments.

5. Inform your mentor if you’re going to be away for a month, or if you leave entirely. Con-
tributing to lilypond isn’t for everybody; just let your mentor know so that we can reassign
that work to somebody else.

6. Inform your mentor if you’re willing to do more work – we always have way more work
than we have helpers available. We try to avoid overwhelming new contributors, so you’ll
be given less work than we think you can handle.

Mentor responsibilities

1. Respond to questions from your contributor(s) promptly, even if the response is just “sorry,
I don’t know” or “sorry, I’m very busy for the next 3 days; I’ll get back to you then”. Make
sure they feel valued.

2. Inform your contributor(s) about the expected turnaround for your emails – do you work
on lilypond every day, or every weekend, or what? Also, if you’ll be unavailable for longer
than usual (say, if you normally reply within 24 hours, but you’ll be at a conference for a
week), let your contributors know. Again, make sure they feel valued, and that your silence
(if they ask a question during that period) isn’t their fault.

3. Inform your contributor(s) if they need to do anything unusual for the builds, such as doing
a “make clean / doc-clean” or switching git branches (not expected, but just in case...)

4. You don’t need to be able to completely approve patches. Make sure the patch meets
whatever you know of the guidelines (for doc style, code indentation, whatever), and then
send it on to -devel for more comments. If you feel confident about the patch, you can push
it directly (this is mainly intended for docs and translations; code patches should almost
always go to -devel before being pushed).

5. Keep track of patches from your contributor. Either upload them to Rietveld yourself,
or help+encourage them to upload the patches themselves. When a patch is on Rietveld,
it’s your responbility to get comments for it, and to add a link to the patch to the google
tracker. (tag it “patch-new”, or “patch-review” if you feel very confident in it)

6. Encourage your contributor to review patches, particularly your own! It doesn’t matter if
they’re not familiar with C++ / scheme / build system / doc stuff – simply going through
the process is valuable. Besides, anybody can find a typo!

7. Contact your contributor at least once a week. The goal is just to get a conversation started
– there’s nothing wrong with simply copy&pasting this into an email:

Hey there,

How are things going? If you sent a patch and got a review, do

you know what you need to fix? If you sent a patch but have no

reviews yet, do you know when you will get reviews? If you are

working on a patch, what step(s) are you working on?
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2 Quick start

Want to submit a patch for LilyPond? Great! Never created a patch before? Never compiled
software before? No problem! This chapter is for you and will help you do this as quickly and
easily as possible.

2.1 LilyDev

“LilyDev” is a custom GNU/Linux operating system which includes all the necessary software
and tools to compile LilyPond, the documentation and the website (also see Chapter 6 [Website
work], page 86).

☛ ✟

Note: LilyDev does not include the software for the Grand Unified
Builder – also see [Grand Unified Builder (GUB)], page 20.
✡ ✠

While compiling LilyPond on Mac OS and Windows is possible, both environments are
complex to set up. LilyDev can be easily run inside a ‘virtual machine’ on either of these
operating systems relatively easily using readily available virtualization software. We recommend
using VirtualBox as it is available for all major operating systems and is very easy to install &
configure.

LilyDev comes in two ‘flavours’: containers and a standard disk image. Windows or Mac
OS users should choose the disk image (to be run in a virtual machine), that is the file named
lilydev-vm-fedora-VERSION. GNU/Linux users are recommended to choose one of the con-
tainers (currently Debian or Fedora), which are smaller in size, lightweight and easier to manage.

Download the appropriate file from here:

https://github.com/fedelibre/LilyDevOS/releases/latest
☛ ✟

Note: Apart from installing and configuring LilyDev in VirtualBox,
the rest of the chapter assumes that you are comfortable using the
command-line and is intended for users who may have never created
a patch or compiled software before. More experienced developers (who
prefer to use their own development environment) may still find it in-
structive to skim over the following information.
✡ ✠

If you are not familiar with GNU/Linux, it may be beneficial to read a few “introduction to
Linux” type web pages.

Installing LilyDev in VirtualBox

This section discusses how to install and use LilyDev with VirtualBox.
☛ ✟

Note: If you already know how to install a virtual machine using a disc
image inside VirtualBox (or your own virtualization software) then you
can skip this section and go straight to Section 2.2 [lily-git], page 7.
✡ ✠

1. Download VirtualBox from here:

http://www.virtualbox.org/wiki/Downloads
☛ ✟

Note: In virtualization terminology, the operating system where
VirtualBox is installed is known as the host. LilyDev will be in-
stalled ‘inside’ VirtualBox as a guest.
✡ ✠

https://github.com/fedelibre/LilyDevOS/releases/latest
http://www.virtualbox.org/wiki/Downloads
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2. The disk image you downloaded is in raw format. As VirtualBox does not support the raw
format, you’ll have to convert it to VDI format:

VBoxManage convertfromraw lilydev-vm-fedora-VERSION.raw lilydev-vm-fedora-

VERSION.vdi

3. Start the VirtualBox software and click ‘New’ to create a new “virtual machine”.

The ‘New Virtual Machine Wizard’ will walk you through setting up your guest virtual
machine. Choose an appropriate name for your LilyDev installation and select the ‘Linux’
operating system. When selecting the ‘version’ choose ‘Fedora (64 bit)’. If you do not have
that specific option choose ‘Linux 2.6/3.x/4.x (64-bit)’.

4. Select the amount of RAM you will allow the LilyDev guest to use from your host operating
system when it is running. If possible, use at least 700 MB of RAM; the more RAM you
can spare from your host the better, although LilyDev will currently use no more than 4
GB (4096 MB) even if you are able to assign more.

5. In the ‘Hard Disk’ step, you’ll use the VDI file you’ve previously created. You may move
it within the virtual machine’s folder already created by the wizard (in GNU/Linux the
default should be ~/VirtualBox VMs/NAME). Click on ‘Use an existing virtual hard disk
file’ and browse to the VDI file.

6. Verify the summary details and click ‘Create’, when you are satisfied. Your new guest will
be displayed in the VirtualBox window.

☛ ✟

Note: The image can be booted only on EFI, so you must enable
it within the virtual machine’s settings – click on System → Moth-
erboard and select ‘Extended features: Enable EFI’.
✡ ✠

7. Click the ‘Start’ button and wait until the login screen appears. You’ll log in as dev user;
type the password lilypond. Before starting any work, be sure to complete the next steps.

8. You might need to change the keybord layout from default US (american) to your national
layout. Click on the menu icon on the bottom left, then on Preferences → Keyboard and
Mouse → Keyboard Layout: add your layout and then move it up to the list so it will be
the default.

9. Disable the screensaver: click on the menu icon, then on Preferences → Screensaver; in the
Mode dropdown menu choose ‘Disable Screen Saver’.

10. Finally you should run a setup script. Click on System Tools → QTerminal to launch the
command line. Then type ./setup.sh to run the interactive script which will set up git
and download all the repositories needed to build LilyPond.

Configuring LilyDev in VirtualBox

VirtualBox has extra ‘guest additions’ which although are not necessary to use LilyDev or
compile LilyPond, do provide some additional features to your Virtual Machine to make it
easier to work with. Such as being able to dynamically resize the LilyDev window, allow seamless
interaction with your mouse pointer on both the host and guest and let you copy/paste between
your host and guest if needed.

1. Select the ‘Devices’ menu from the virtual machine window and choose ‘Install Guest Ad-
ditions...’. This will automount a CD which will prompt you to autorun it. Click OK and
follow the instructions. It is recommended to reboot the guest when the installation is
complete.

Other virtualization software will also have their own ‘guest’ additions, follow the normal
procedures for your virtualization software with LilyDev as the client.
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2. Restart LilyDev to complete the installation of the guest additions.

Advanced note: If you do any kernel upgrades, you may need to reinstall the
additional software. Just follow the step above again and reboot when the
reinstallation is complete.

Other items that may be helpful:

• In the settings for the virtual machine, set the network to Bridged mode to allow you to
access shared folders when using Windows hosts.

• Set up any additional features, such as ‘Shared Folders’ between your main operating system
and LilyDev. This is distinct from the networked share folders in Windows. Consult the
external documentation for this.

Some longtime contributors have reported that ‘shared folders’ are rarely useful and not
worth the fuss, particularly since files can be shared over a network instead.

• Pasting into a terminal is done with Ctrl+Shift+v.

• Right-click allows you to edit a file with the text editor (default is Leafpad).

Known issues and warnings

Not all hardware is supported in all virtualization tools. In particular, some contributors have
reported problems with USB network adapters. If you have problems with network connection
(for example Internet connection in the host system is lost when you launch virtual system), try
installing and running LilyDev with your computer’s built-in network adapter used to connect
to the network. Refer to the help documentation that comes with your virtualization software.

2.2 lily-git

The ‘LilyPond Contributor’s Git Interface’ (otherwise known as lily-git.tcl) is a simple-to-
use GUI to help you download and update the LilyPond source code as well as an aid to making
software patches.

Where to get lily-git

Depending on your development environment, lily-git may already be installed on your computer.

• If you are using LilyDev (see Section 2.1 [LilyDev], page 5) then lily-git should already be
installed and ready to run. If this is not the case you can easily turn it on by adding the
following line in ~/.bashrc:

# add lily-git to the PATH

PATH=$LILYPOND_GIT/scripts/auxiliar:"${PATH}"

• For those not using LilyDev, lily-git can be obtained by downloading the software directly.
See Section 3.1 [Manually installing lily-git.tcl], page 14.

• lily-git is part of the LilyPond source code and is located in
$LILYPOND_GIT/scripts/auxiliar/lily-git.tcl.

Using lily-git to download the source code

1. Type the following command into a Terminal:

lily-git.tcl

You will be prompted to enter a name and email address into the lily-git UI. This information
is used to label any patches you create (using the lily-git UI or git via the command line)
and can be changed later if required. See [Configuring Git], page 15.

2. Click on the Submit button to update lily-git with the information.
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3. Click on the “Get source” button.

A directory called lilypond-git is created within your home directory and the entire source
code will start to be downloaded into it.

☛ ✟

Note: Be patient! There is no progress bar in the lily-git UI but
the complete source is around 180 MB.
✡ ✠

When the source code has been downloaded, the “command output” window in the lily-git
UI will update and display “Done” on the very last line and the button label will change
to say “Update source”.

☛ ✟

Note: Some contributors have reported that occasionally nothing
happens at this step at all. If this occurs, then try again in a
few minutes – it could be an intermittant network problem. If the
problem persists, please ask for help.
✡ ✠

4. Close the lily-git GUI and navigate to the lilypond-git directory to view and edit the
source files.

If this is the first time you will be attempting to compile LilyPond, please see the section
Section 2.4 [Compiling with LilyDev], page 12, before continuing.

How to use lily-git

Here is a brief description of what each button does in the lily-git UI.

Advanced note: Throughout the rest of this manual, most command-line input
should be entered from within the top level of the ~/lilypond-git/ directory.
This is known as the top of the source directory and is also referred to as $LILY-

POND GIT as a convention for those users who may have configured their own
locations of the LilyPond source code.

☛ ✟

Note: For those less experienced contributors using lily-git, we recom-
mend that you only work on one set of changes at a time and not start
on any new changes until your first set has been accepted.
✡ ✠

1. Update source

Click the “Update source” button to get any recent changes to the source code that have been
added by other contributors since your last session.

☛ ✟

Note: If another contributor has updated files in the source code that
you had been working on then updating your own copy of the source
code may result in what is known as a merge conflict. If this occurs,
follow the instructions to “Abort changes”, below. Note that your work
will not be lost.
✡ ✠

2a. New local commit

A single commit typically represents one logical set of related changes (such as a bug-fix), and
may incorporate changes to multiple files at the same time.

When you’re finished making the changes for a commit, click the “New local commit” button.
This will open the “Git Commit Message” window. The message header is required, and the
message body is optional.
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After entering a commit message, click “OK” to finalize the commit.

Advanced note: for more information regarding commits and commit messages, see
Section 3.3.4 [Commits], page 25.

2b. Amend previous commit

You can go back and make changes to the most recent commit with the “Amend previous
commit” button. This is useful if a mistake is found after you have clicked the “New local
commit” button.

To amend the most recent commit, re-edit the source files as needed and then click the
“Amend previous commit” button. The earlier version of the commit is not saved, but is
replaced by the new one.

☛ ✟

Note: This does not update the patch files; if you have a patch file from
an earlier version of the commit, you will need to make another patch
set when using this feature. The old patch file will not be saved, but
will be replaced by the new one after you click on “Make patch set”.
✡ ✠

3. Make patch set

Before making a patch set from any commits, you should click the “Update source” button to
make sure the commits are based on the most recent remote snapshot.

When you click the “Make patch set” button, lily-git.tcl will produce patch files for any
new commits, saving them to the current directory. The command output will display the name
of the new patch files near the end of the output:

0001-CG-add-lily-git-instructions.patch

Done.

Send patch files to the appropriate place:

• If you have a mentor, send it to them via email.

• Translators should send patches to translations@lilynet.net.

• More experienced contributors should upload the patch for web-based review. This requires
additional software and use of the command-line; see Section 3.3.6 [Uploading a patch for
review], page 27.

• If you have trouble uploading the patch for review, ask for help on
lilypond-devel@gnu.org.

The “Abort changes – Reset to origin” button
☛ ✟

Note: Only use this if your local commit history gets hopelessly con-
fused!
✡ ✠

The button labeled “Abort changes – Reset to origin” will copy all changed files to a subdi-
rectory of $LILYPOND_GIT named aborted_edits/, and will reset the repository to the current
state of the remote repository (at git.sv.gnu.org).

2.3 git-cl

Git-cl is a ‘helper script’ that uploads patches to Google’s Rietveld Code Review Tool – used
by the developers for patch review – and, at the same time, updates LilyPond’s issue tracker.

mailto:translations@lilynet.net
mailto:lilypond-devel@gnu.org
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Installing git-cl
☛ ✟

Note: LilyDev users can jump straight to the next section on updating
git-cl as it will already be installed in your home directory.
✡ ✠

1. Download git-cl by running the command:

git clone https://github.com/gperciva/git-cl.git

or, if that command fails for any reason, try:

git clone git://github.com/gperciva/git-cl.git

2. Add the git-cl/ directory to your PATH or create a symbolic link to the git-cl and
upload.py scripts in one of your PATH directories (e.g. $HOME/bin).

In GNU/Linux you can add directories to PATH by adding this line to your .bashrc file
located in your home directory:

PATH=~/directory_containing_git-cl:"${PATH}"

Updating git-cl

LilyDev users should make sure that they always have the latest version of git-cl installed. It
is possible that changes have been made to git-cl that are not (yet) included in the version of
LilyDev that you are using.

Using a terminal run the following commands:

cd ~/git-cl/

git pull

This will download and update you to the lastest version of git-cl.

Configuring git-cl

Because git-cl updates two separate websites (Google’s Rietveld Code Review Tool and Lily-
Pond’s issue tracker) you must have a valid user account (login and password) for both sites.

Set up a login account for Rietveld Code Review Tool

For the Rietveld Code Review Tool you will need a Google account but this does not require
‘Google’ email address; i.e. any email address for your Google account can be used. Just select
the option “I prefer to use my current email address” when you sign up with Google.

☛ ✟

Note: In order for git-cl to work correctly with this Google account,
your Google Account Settings must have the ‘Access for less secure apps’
set to ‘Allowed’ – this is normally the default setting.
✡ ✠

Set up a login account for LilyPond’s Issue Tracker

Please register a user account at https://sourceforge.net/user/registration preferably
using the same email address that you want to use LilyPond Developer mailing list login.

Once you have created this Sourceforge user account, send an email to the LilyPond Developer’s
mailing list (lilypond-devel@gnu.org) asking for write access to the issue tracker along with
your Sourceforce Username (not email address) and someone will then be able to set this up for
you.

Authorizing git-cl for the LilyPond issue tracker

The git-cl command itself also needs to be ‘authorized’ so that it can access the LilyPond
issue tracker.
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1. Once you have been given a valid login for the LilyPond issue tracker, go to the ‘Account
settings’ and select the ‘OAuth’ tab.

2. Locate the ‘Register New Application’ section and enter git-cl in the ‘Application Name:’
field.

3. Click on the ‘Register new application’ button. You should now see ‘git-cl’ listed under the
‘My Applications’ section.

4. Click on the ‘Generate Bearer Token’ button. You should now see ‘git-cl’ listed under the
‘Authorized Applications’ section along with a value for the ‘Bearer Token’ entry. This
value is used, in the next steps, to allow git-cl to access and update the LilyPond issue
tracker.

Installing ca-certificates

In order to have git-cl properly update issues on the SourceForge Allura issue tracker, you must
have the package ca-certificates installed. You can check to see if the package is installed
with

apt --installed list | grep ca-certificates

If ca-certificates is installed, you will get a result that shows the version that is installed.
If it is not installed, there will be no version displayed.

Install ca-certificates with the following:

sudo apt-get install ca-certificates

Running git-cl for the first time

1. Using a terminal, move to the top level of the $LILYPOND_GIT directory and then run git-cl

with the config option:

cd $LILYPOND_GIT

git-cl config

You will see a series of prompts. For most of them you can simply accept the default value
by responding with a newline (i.e. by pressing return or enter).

2. The prompt for the Rietveld server (the patch review tool), which defaults to
codereview.appspot.com

Rietveld server (host[:port]) [codereview.appspot.com]:

3. The prompt for the Allura server (the issue tracker), which defaults to
https://sourceforge.net/p/testlilyissues/issues/

Allura server [https://sourceforge.net/p/testlilyissues/issues/]:

4. When prompted for the Allura bearer token copy/paste the value generated in the pre-
vious steps for Authorising git-cl for the LilyPond issue tracker

Allura bearer token (see https://sourceforge.net/auth/oauth/): fdbfca60801533465480
☛ ✟

Note: The above is a ‘fake’ bearer token used just for illustration.
Do not use this value.
✡ ✠

5. Finally, the prompt for the CC list, which defaults to lilypond-devel@gnu.org, the Lily-
Pond Developer’s email list.

CC list ("x" to clear) [lilypond-devel@gnu.org]:

The git-cl script should now be correctly configured for use.
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2.4 Compiling with LilyDev

LilyDev is our custom GNU/Linux which contains all the necessary dependencies to do LilyPond
development; for more information, see Section 2.1 [LilyDev], page 5.

Preparing the build

To prepare the build directory, enter (or copy&paste) the below text. This should take less than
a minute.

cd $LILYPOND_GIT

sh autogen.sh --noconfigure

mkdir -p build/

cd build/

../configure

Building lilypond

Compiling LilyPond will take anywhere between 1 and 15 minutes on most ‘modern’ computers
– depending on CPU and available RAM. We also recommend that you minimize the terminal
window while it is building; this can help speed up on compilation times.

cd $LILYPOND_GIT/build/

make

It is possible to run make with the -j option to help speed up compilation times even more. See
Section 4.5 [Compiling LilyPond], page 51,

You may run the compiled lilypond with:

cd $LILYPOND_GIT/build/

out/bin/lilypond my-file.ly

Building the documentation

Compiling the documentation is a much more involved process, and will likely take 2 to 10 hours.

cd $LILYPOND_GIT/build/

make

make doc

The documentation is put in out-www/offline-root/. You may view the html files by
entering the below text; we recommend that you bookmark the resulting page:

firefox $LILYPOND_GIT/build/out-www/offline-root/index.html

Installing

Don’t. There is no reason to install LilyPond within LilyDev. All development work can (and
should) stay within the $LILYPOND_GIT directory, and any personal composition or typesetting
work should be done with an official GUB release.

Problems and other options

To select different build options, or isolate certain parts of the build, or to use multiple CPUs
while building, read Chapter 4 [Compiling], page 44.

In particular, contributors working on the documentation should be aware of some bugs in
the build system, and should read the workarounds in Section 4.6.2 [Generating documentation],
page 53.
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2.5 Now start work!

LilyDev users may now skip to the chapter which is aimed at their intended contributions:

• Chapter 5 [Documentation work], page 59,

• Section 5.9 [Translating the documentation], page 75,

• Chapter 6 [Website work], page 86,

• Chapter 9 [Regression tests], page 105,

• Chapter 10 [Programming work], page 111,

These chapters are mainly intended for people not using LilyDev, but they contain extra
information about the “behind-the-scenes” activities. We recommend that you read these at
your leisure, a few weeks after beginning work with LilyDev.

• Chapter 3 [Working with source code], page 14,

• Chapter 4 [Compiling], page 44,
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3 Working with source code

☛ ✟

Note: New contributors should read Chapter 2 [Quick start], page 5,
and in particular Section 2.2 [lily-git], page 7, instead of this chapter.
✡ ✠

Advanced contributors will find this material quite useful, particularly if they are working
on major new features.

3.1 Manually installing lily-git.tcl

We have created an easy-to-use GUI to simplify git for new contributors. If you are comfortable
with the command-line, then skip ahead to Section 3.2 [Starting with Git], page 14.

☛ ✟

Note: These instructions are only for people who are not using
Section 2.1 [LilyDev], page 5.
✡ ✠

1. If you haven’t already, download and install Git.

• Windows users: download the .exe file labeled “Full installer for official Git” from:

https://git-for-windows.github.io/

• Other operating systems: either install git with your package manager, or download
it from the “Binaries” section of:

http://git-scm.com/download

2. Download the lily-git.tcl script from:

http://git.sv.gnu.org/cgit/lilypond.git/plain/scripts/auxiliar/lily-git.tcl

3. To run the program from the command line, navigate to the directory containing
lily-git.tcl and enter:

wish lily-git.tcl

4. Click on the “Get source” button.

This will create a directory called lilypond-git/ within your home directory, and will
download the source code into that directory (around 150 Mb). When the process is finished,
the “Command output” window will display “Done”, and the button label will change to
say “Update source”.

5. Navigate to the lilypond-git/ directory to view the source files.

☛ ✟

Note: Throughout the rest of this manual, most command-line input
should be entered from $LILYPOND_GIT. This is referred to as the top
source directory.
✡ ✠

Further instructions are in [How to use lily-git], page 8.

3.2 Starting with Git

Using the Git program directly (as opposed to using the lily-git.tcl GUI) allows you to have
much greater control over the contributing process. You should consider using Git if you want
to work on complex projects, or if you want to work on multiple projects concurrently.

https://git-for-windows.github.io/
http://git-scm.com/download
http://git.sv.gnu.org/cgit/lilypond.git/plain/scripts/auxiliar/lily-git.tcl
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3.2.1 Setting up
☛ ✟

Note: These instructions assume that you are using the command-line
version of Git 1.5 or higher. Windows users should skip to Section 3.5
[Git on Windows], page 36.
✡ ✠

Installing Git

If you are using a Unix-based machine, the easiest way to download and install Git is through
a package manager such as rpm or apt-get – the installation is generally automatic. The only
required package is (usually) called git-core, although some of the auxiliary git* packages are
also useful (such as gitk).

Alternatively, you can visit the Git website (http://git-scm.com/ ) for downloadable
binaries and tarballs.

Initializing a repository

Once Git is installed, get a copy of the source code:

git clone git://git.sv.gnu.org/lilypond.git ~/lilypond-git

The above command will put the it in ~/lilypond-git, where ~ represents your home
directory.

Technical details

This creates (within the $LILYPOND_GIT directory) a subdirectory called .git/, which Git uses
to keep track of changes to the repository, among other things. Normally you don’t need to
access it, but it’s good to know it’s there.

Configuring Git
☛ ✟

Note: Throughout the rest of this manual, all command-line input
should be entered from the top directory of the Git repository being
discussed (eg. $LILYPOND_GIT). This is referred to as the top source
directory.
✡ ✠

Before working with the copy of the main LilyPond repository, you should configure some
basic settings with the git config command. Git allows you to set both global and repository-
specific options.

To configure settings that affect all repositories, use the --global command line option. For
example, the first two options that you should always set are your name and email, since Git
needs these to keep track of commit authors:

git config --global user.name "John Smith"

git config --global user.email john@example.com

To configure Git to use colored output where possible, use:

git config --global color.ui auto

The text editor that opens when using git commit can also be changed. If none of your
editor-related environment variables are set ($GIT EDITOR, $VISUAL, or $EDITOR), the
default editor is usually vi or vim. If you’re not familiar with either of these, you should
probably change the default to an editor that you know how to use. For example, to change the
default editor to nano, enter:

git config --global core.editor nano

http://git-scm.com/
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Finally, and in some ways most importantly, let’s make sure that we can easily see the state
of our working copy, without the need of typing git status repeatedly. If you’re not using
LilyDev, add the following lines to your ~/.bashrc:

export PS1="\u@\h \w\$(__git_ps1)$ "

export GIT_PS1_SHOWDIRTYSTATE=true

export GIT_PS1_SHOWUNTRACKEDFILES=true

export GIT_PS1_SHOWUPSTREAM=auto

The first line will show the branch we’re on. The other lines will use some symbols next to
the branch name to indicate some kind of state. “*” means that there are unstaged changes,
“+” indicates staged changes; if there are untracked files, a “%” will appear. Finally, we can
also see if our HEAD is behind (“<”) or ahead (“>”) of its upstream, and if they have diverged
(“<>”) or they are synced (“=”).

You may need to install the additional bash-completion package, but it is definitely worth
it. After installation you must log out, and then log back in again to enable it.

Technical details

Git stores the information entered with git config --global in the file .gitconfig, located
in your home directory. This file can also be modified directly, without using git config. The
.gitconfig file generated by the above commands would look like this:

[user]

name = John Smith

email = john@example.com

[color]

ui = auto

[core]

editor = nano

Using the git config command without the --global option configures repository-specific
settings, which are stored in the file .git/config. This file is created when a repository is
initialized (using git init), and by default contains these lines:

[core]

repositoryformatversion = 0

filemode = true

bare = false

logallrefupdates = true

However, since different repository-specific options are recommended for different develop-
ment tasks, it is best to avoid setting any now. Specific recommendations will be mentioned
later in this manual.

3.2.2 Git for the impatient

Advanced note: The intent of this subsection is to get you working on lilypond as
soon as possible. If you want to learn about git, go read Section 3.7 [Other Git
documentation], page 43.
Also, these instructions are designed to eliminate the most common problems we
have found in using git. If you already know git and have a different way of working,
great! Feel free to ignore the advice in this subsection.

Ok, so you’ve been using lily-git.tcl for a while, but it’s time to take the next step. Since
our review process delays patches by 60-120 hours, and you want to be able to work on other
stuff while your previous work is getting reviewed, you’re going to use branches.

You can think of a branch as being a separate copy of the source code. But don’t worry
about it.
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Start work: make a new branch

Let’s pretend you want to add a section to the Contributor’s Guide about using branches.

Start by updating the repository, then making a new branch. Call the branch anything you
want as long as the name starts with dev/. Branch names that don’t begin with dev/ are
reserved for special things in lilypond.

git checkout master

git pull -r origin master

git branch dev/cg

Switch to that branch

Nothing has happened to the files yet. Let’s change into the new branch. You can think of this
as “loading a file”, although in this case it’s really “loading a directory and subdirectories full
of files”.

git checkout dev/cg

Your prompt now shows you that you’re on the other branch:

gperciva@LilyDev:~/lilypond-git (dev/cg)$

To be able to manage multiple lilypond issues at once, you’ll need to switch branches. You
should have each lilypond issue on a separate branch. Switching branches is easy:

git checkout master

git checkout origin/staging

git checkout origin/release/unstable

git checkout dev/cg

Branches that begin with origin/ are part of the remote repository, rather than your local
repository, so when you check them out you get a temporary local branch. You should never
make changes directly on a branch beginning with origin/. You get changes into the remote
repository by making them in local branches, and then pushing them to origin/staging as
described below.

Make your changes

Edit files, then commit them.

git commit -a

Remember how I said that switching to a branch was like “loading a directory”? Well, you’ve
just “saved a directory”, so that you can “load” it later.

Advanced note: If you have used cvs or svn, you may be very confused: those
programs use “commit” to mean “upload my changes to the shared source reposi-
tory”. Unfortunately, just to be different, git commit means “save my changes to
the files”.

When you create a new file, you need to add it to git, then commit it:

git add input/regression/avoid-crash-on-condition.ly

git commit -a

Edit more files. Commit them again. Edit yet more files, commit them again. Go eat dinner.
Switch to master so you can play with the latest changes from other developers. Switch back
to your branch and edit some more. Commit those changes.

At this stage, don’t worry about how many commits you have.
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Save commits to external files

Branches are nerve-wracking until you get used to them. You can save your hard work as
individual .patch files. Be sure to commit your changes first.

git commit -a

git format-patch master

I personally have between 4 and 20 of those files saved in a special folder at any point in
time. Git experts might laugh as that behavior, but I feel a lot better knowing that I’ve got
those backups.

Prepare your branch for review

After committing, you can update your branch with the latest master:

git commit -a

git checkout master

git pull -r origin master

git checkout dev/cg

git rebase master

Due to the speed of lilypond development, sometimes master has changed so much that your
branch can no longer be applied to it. In that happens, you will have a merge conflict. Stop
for a moment to either cry or have a stiff drink, then proceed to Section 3.4.1 [Merge conflicts],
page 30.

Upload your branch

Finally, you’re finished your changes. Time to upload for review. Make sure that you’re on your
branch, then upload:

git checkout dev/cg

git-cl upload master

Wait for reviews

While you’re waiting for a countdown and reviews, go back to master, make a dev/doc-beams

branch, and start adding doc suggestions from issue 12345 from the tracker. Or make a
dev/page-breaks and fix bug in page breaking. Or whatever. Don’t worry, your dev/cg is
safe.

Combining commits (optional unless you have broken commits)

Does the history of your branch look good?

gitk

If you have a lot of commits on your branch, you might want to combine some of them.
Alternately, you may like your commits, but want to edit the commit messages.

git rebase -i master

Follow instructions on the screen.
☛ ✟

Note: This step gives you the power to completely lose your work. Make
a backup of your commits by saving them to .patch files before playing
with this. If you do lose your work, don’t despair. You can get it back
by using git reflog. The use of git reflog is not covered here.
✡ ✠
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☛ ✟

Note: If any of the commits on your branch represent partial work that
will not pass make && make doc, you must squash these commits into a
working commit. Otherwise, your push will break staging and will not
be able to be merged to master. In general, you will be safer to have
one commit per push.
✡ ✠

Push to staging

When you’ve got the coveted Patch-push status, time to prepare your upload:

git fetch

git rebase origin/staging dev/cg~0

gitk HEAD
☛ ✟

Note: Do not skip the gitk step; a quick 5-second check of the visual
history can save a great deal of frustration later on. You should see a
set of your commits that are ahead of origin/staging, with no label
for the top commit – only a SHA1 id.
✡ ✠
☛ ✟

Note: If origin/staging and origin/master are the same commit,
your branch (dev/cg in the example) will also be at the top of the gitk

tree. This is normal.
✡ ✠

If everything looks good, push it:

git push origin HEAD:staging

Then change back to your working branch:

git checkout dev/cg
☛ ✟

Note: It is a best practice to avoid rebasing any of your branches to
origin/staging. If origin/staging is broken, it will be deleted and
rebuilt. If you have rebased one of your branches to origin/staging,
the broken commits can end up in your branch. The commands given
above do the rebase on a temporary branch, and avoid changing your
working branch.
✡ ✠

Delete your branch (safe)

After a few hours, if there’s nothing wrong with your branch, it should be automatically moved
to origin/master. Update, then try removing your branch:

git checkout master

git pull -r origin master

git branch -d dev/cg

The last command will fail if the contents of dev/cg are not present in origin/master.

Delete your branch (UNSAFE)

Sometimes everything goes wrong. If you want to remove a branch even though it will cause
your work to be lost (that is, if the contents of dev/cg are not present in master), follow the
instructions in “Delete your branch (safe)”, but replace the -d on the final line with a -D.

3.2.3 Other repositories

We have a few other code repositories.
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lilypond-extra

There is a separate repository for general administrative scripts, as well as pictures and media
files for the website. People interested in working on the website should download this repository,
and set their $LILYPOND_WEB_MEDIA_GIT environment variable to point to that repository.

https://github.com/gperciva/lilypond-extra

To configure an environment variable in bash (the default for most GNU/Linux distributions),

export LILYPOND_WEB_MEDIA_GIT=$HOME/dir/of/lilypond-extra/

Be aware that lilypond-extra is the definitive source for some binary files - in particular
PDF versions of papers concerning LilyPond. To add further PDFs of this sort, all that is neces-
sary is to add the PDF to lilypond-extra and then add a reference to it in the documentation.
The file will then be copied to the website when make website is run.

However, pictures that are also used in the documentation build are mastered in the main
git repository. If any of these is changed, it should be updated in git, and then the updates
copied to lilypond-extra.

Grand Unified Builder (GUB)

Another item of interest might be the Grand Unified Builder, our cross-platform building tool.
Since it is used by other projects as well, it is not stored in our gub repository. For more info,
see http://lilypond.org/gub.

There are two locations for this repository: the version being used to build lilypond, which
is at

http://github.com/gperciva/gub

and the original version by Jan Nieuwenhuizen, kept at

http://github.com/janneke/gub

LilyPad

Our binary releases on MacOS X and Windows contain a lightweight text editor.

To make any modifications the Windows editor, you will need to do the following:

1. Clone the git repository from https://github.com/gperciva/lilypad

2. Make changes to the source, and check it compiles. In a Windows environment MinGW

provides both a Git installation and a gcc compiler. This can be obtained from
http://www.mingw.org/

3. Update the version which is contained in the rsrc.rc. Check this compiles, too.

4. Commit the changes with an informative commit message.

5. Push the changes to github. You will need to use syntax similiar to this:

git push https://UserName@github.com/gperciva/lilypad.git

You will need to have push access to the git repository for this to be successful.

6. Make a tarball of the source code to be used by GUB by pulling the updated repository
from GitHub. Ensure that the tarball has the correct Version number.

7. Copy the tarball to http://lilypond.org/downloads/gub-sources/lilypad/. You will
need to have SSH access to lilypond.org. If you do not, contact the Release Manager via
the lilypond-devel mailing list.

8. Update GUB to make it use the new tarball by editing gub/specs/lilypad.py and chang-
ing the source = line to point to the new source.

9. Push this updated lilypad.py version to the GUB repository on GitHub.

10. Test the changes with a new GUB compile.

https://github.com/gperciva/lilypond-extra
http://lilypond.org/gub
http://github.com/gperciva/gub
http://github.com/janneke/gub
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yet more repositories

There are a few other repositories floating around, which will hopefully be documented in the
near future.

3.2.4 Downloading remote branches
☛ ✟

Note: contains obsolete + misleading info
✡ ✠

Organization of remote branches

The main LilyPond repository is organized into branches to facilitate development. These are
often called remote branches to distinguish them from local branches you might create yourself
(see Section 3.3.3 [Using local branches], page 24).

The master branch contains all the source files used to build LilyPond, which includes the
program itself (both stable and development releases), the documentation (and its translations),
and the website. Generally, the master branch is expected to compile successfully.

The translation branch is a side branch that allows translators to work without needing
to worry about compilation problems. Periodically, the Translation Meister (after verifying
that it doesn’t break compilation), will merge this branch into staging to incorporate recent
translations. Similarly, the master branch is usually merged into the translation branch after
significant changes to the English documentation. See Section 5.9 [Translating the documenta-
tion], page 75, for details.

LilyPond repository sources

The recommended source for downloading a copy of the main repository is:

git://git.sv.gnu.org/lilypond.git

However, if your internet router filters out connections using the GIT protocol, or if you
experience difficulty connecting via GIT, you can try these other sources:

ssh://git.sv.gnu.org/srv/git/lilypond.git

http://git.sv.gnu.org/r/lilypond.git

The SSH protocol can only be used if your system is properly set up to use it. Also, the
HTTP protocol is slowest, so it should only be used as a last resort.

Downloading individual branches
☛ ✟

Note: obsolete, should be deleted!
✡ ✠

Once you have initialized an empty Git repository on your system (see [Initializing a reposi-
tory], page 15), you can download a remote branch into it. Make sure you know which branch
you want to start with.

To download the master branch, enter the following:

git remote add -ft master -m master \

origin git://git.sv.gnu.org/lilypond.git/

To download the translation branch, enter:

git remote add -ft translation -m \

translation origin git://git.sv.gnu.org/lilypond.git/

The git remote add process could take up to ten minutes, depending on the speed of your
connection. The output will be something like this:

Updating origin
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remote: Counting objects: 235967, done.

remote: Compressing objects: 100% (42721/42721), done.

remote: Total 235967 (delta 195098), reused 233311 (delta 192772)

Receiving objects: 100% (235967/235967), 68.37 MiB | 479 KiB/s, done.

Resolving deltas: 100% (195098/195098), done.

From git://git.sv.gnu.org/lilypond

* [new branch] master -> origin/master

From git://git.sv.gnu.org/lilypond

* [new tag] flower/1.0.1 -> flower/1.0.1

* [new tag] flower/1.0.10 -> flower/1.0.10

* [new tag] release/2.9.6 -> release/2.9.6

* [new tag] release/2.9.7 -> release/2.9.7

When git remote add is finished, the remote branch should be downloaded into your
repository—though not yet in a form that you can use. In order to browse the source code
files, you need to create and checkout your own local branch. In this case, however, it is easier
to have Git create the branch automatically by using the checkout command on a non-existent
branch. Enter the following:

git checkout -b branch origin/branch

where branch is the name of your tracking branch, either master or translation.

Git will issue some warnings; this is normal:

warning: You appear to be on a branch yet to be born.

warning: Forcing checkout of origin/master.

Branch master set up to track remote branch master from origin.

Already on 'master'

By now the source files should be accessible—you should be able to edit any files in the
$LILYPOND_GIT directory using a text editor of your choice. But don’t start just yet! Before
editing any source files, learn how to keep your changes organized and prevent problems later—
read Section 3.3 [Basic Git procedures], page 23.

Technical Details

The git remote add command should add some lines to your local repository’s .git/config

file:

[remote "origin"]

url = git://git.sv.gnu.org/lilypond.git/

fetch = +refs/heads/master:refs/remotes/origin/master

Downloading all remote branches

To download all remote branches at once, you can clone the entire repository:

git clone git://git.sv.gnu.org/lilypond.git

Other branches

Most contributors will never need to touch the other branches. If you wish to do so, you will
need more familiarity with Git; please see Section 3.7 [Other Git documentation], page 43.

• dev/XYZ: These branches are for individual developers. They store code which is not yet
stable enough to be added to the master branch.

• stable/XYZ: The branches are kept for archival reasons.

• archive/XYZ: The branches are kept for archival reasons.
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3.3 Basic Git procedures

3.3.1 The Git contributor’s cycle

Here is a simplified view of the contribution process on Git:

1. Update your local repository by pulling the most recent updates from the remote repository.

2. Edit source files within your local repository’s working directory.

3. Commit the changes you’ve made to a local branch.

4. Generate a patch to share your changes with the developers.

3.3.2 Pulling and rebasing

When developers push new patches to the git.sv.gnu.org repository, your local repository is
not automatically updated. It is important to keep your repository up-to-date by periodically
pulling the most recent commits from the remote branch. Developers expect patches to be as
current as possible, since outdated patches require extra work before they can be used.

Occasionally you may need to rework some of your own modifications to match changes made
to the remote branch (see Section 3.4.3 [Resolving conflicts], page 31), and it’s considerably easier
to rework things incrementally. If you don’t update your repository along the way, you may
have to spend a lot of time resolving branch conflicts and reconfiguring much of the work you’ve
already done.

Fortunately, Git is able to resolve certain types of branch conflicts automatically with a
process called rebasing. When rebasing, Git tries to modify your old commits so they appear as
new commits (based on the latest updates). For a more involved explanation, see the git-rebase
man page.

To pull without rebasing (recommended for translators), use the following command:

git pull # recommended for translators

If you’re tracking the remote master branch, you should add the -r option (short for
--rebase) to keep commits on your local branch current:

git pull -r # use with caution when translating

If you don’t edit translated documentation and don’t want to type -r every time, configure
the master branch to rebase by default with this command:

git config branch.master.rebase true

If pull fails because of a message like

error: Your local changes to 'Documentation/learning/tutorial.itely'

would be overwritten by merge. Aborting.

or

Documentation/learning/tutorial.itely: needs update

refusing to pull with rebase: your working tree is not up-to-date

it means that you have modified some files in you working tree without committing changes (see
Section 3.3.4 [Commits], page 25); you can use the git stash command to work around this:

git stash # save uncommitted changes

git pull -r # pull using rebase (translators omit "-r")

git stash pop # reapply previously saved changes

Note that git stash pop will try to apply a patch, and this may create a conflict. If this
happens, see Section 3.4.3 [Resolving conflicts], page 31.

TODO: I think the next paragraph is confusing. Perhaps prepare the reader for new terms
‘committish’ and ‘head’? -mp
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☛ ✟

Note: translators and documentation editors, if you have changed com-
mittishes in the head of translated files using commits you have not
yet pushed to git.sv.gnu.org, please do not rebase. If you want to
avoid wondering whether you should rebase each time you pull, please
always use committishes from master and/or translation branch on
git.sv.gnu.org, which in particular implies that you must push your
changes to documentation except committishes updates (possibly after
having rebased), then update the committishes and push them.
✡ ✠

TODO: when committishes automatic conditional update have been tested and documented,
append the following to the warning above: Note that using update-committishes make target
generally touches committishes.

Technical details

The git config command mentioned above adds the line rebase = true to the master branch
in your local repository’s .git/config file:

[branch "master"]

remote = origin

merge = refs/heads/master

rebase = true

3.3.3 Using local branches

Creating and removing branches

Local branches are useful when you’re working on several different projects concurrently. To
create a new branch, enter:

git branch name

To delete a branch, enter:

git branch -d name

Git will ask you for confirmation if it sees that data would be lost by deleting the branch.
Use -D instead of -d to bypass this. Note that you cannot delete a branch if it is currently
checked out.

Listing branches and remotes

You can get the exact path or URL of all remote branches by running:

git remote -v

To list Git branches on your local repositories, run

git branch # list local branches only

git branch -r # list remote branches

git branch -a # list all branches

Checking out branches

To know the currently checked out branch, i.e. the branch whose source files are present in your
working tree, read the first line of the output of

git status

The currently checked out branch is also marked with an asterisk in the output of git branch.

You can check out another branch other_branch, i.e. check out other_branch to the working
tree, by running

git checkout other_branch
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Note that it is possible to check out another branch while having uncommitted changes, but
it is not recommended unless you know what you are doing; it is recommended to run git

status to check this kind of issue before checking out another branch.

Merging branches

To merge branch foo into branch bar, i.e. to “add” all changes made in branch foo to branch
bar, run

git checkout bar

git merge foo

If any conflict happens, see Section 3.4.3 [Resolving conflicts], page 31.

There are common usage cases for merging: as a translator, you will often want the Trans-
lations meister to merge master into translation; on the other hand, the Translations meister
wants to merge translation into staging whenever he has checked that translation builds
successfully.

3.3.4 Commits

Understanding commits

Technically, a commit is a single point in the history of a branch, but most developers use the
term to mean a commit object, which stores information about a particular revision. A single
commit can record changes to multiple source files, and typically represents one logical set of
related changes (such as a bug-fix). You can list the ten most recent commits in your current
branch with this command:

git log -10 --oneline

If you’re using an older version of Git and get an ‘unrecognized argument’ error, use this
instead:

git log -10 --pretty=oneline --abbrev-commit

More interactive lists of the commits on the remote master branch are available at http://
git.sv.gnu.org/gitweb/?p=lilypond.git;a=shortlog and http://git.sv.gnu.org/cgit/

lilypond.git/log/.

How to make a commit

Once you have modified some source files in your working directory, you can make a commit
with the following procedure:

1. Make sure you’ve configured Git properly (see [Configuring Git], page 15). Check that your
changes meet the requirements described in Section 10.5 [Code style], page 115, and/or
Section 5.5 [Documentation policy], page 69. For advanced edits, you may also want to
verify that the changes don’t break the compilation process.

2. Run the following command:

git status

to make sure you’re on the right branch, and to see which files have been modified, added
or removed, etc. You may need to tell Git about any files you’ve added by running one of
these:

git add file # add untracked file individually

git add . # add all untracked files in current directory

After git add, run git status again to make sure you got everything. You may also need
to modify GNUmakefile.

http://git.sv.gnu.org/gitweb/?p=lilypond.git;a=shortlog
http://git.sv.gnu.org/gitweb/?p=lilypond.git;a=shortlog
http://git.sv.gnu.org/cgit/lilypond.git/log/
http://git.sv.gnu.org/cgit/lilypond.git/log/
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3. Preview the changes about to be committed (to make sure everything looks right) with:

git diff HEAD

The HEAD argument refers to the most recent commit on the currently checked-out branch.

4. Generate the commit with:

git commit -a

The -a is short for --all which includes modified and deleted files, but only those newly
created files that have previously been added.

Commit messages

When you run the git commit -a command, Git automatically opens the default text editor
so you can enter a commit message. If you find yourself in a foreign editing environment, you’re
probably in vi or vim. If you want to switch to an editor you’re more familiar with, quit by
typing :q! and pressing <Enter>. See [Configuring Git], page 15, for instructions on changing
the default editor.

In any case, Git will open a text file for your commit message that looks like this:

# Please enter the commit message for your changes. Lines starting

# with '#' will be ignored, and an empty message aborts the commit.

# On branch master

# Changes to be committed:

# (use "git reset HEAD <file>..." to unstage)

#

# modified: working.itexi

#

Your commit message should begin with a one-line summary describing the change (no more
than 50 characters long), and if necessary a blank line followed by several lines giving the details:

Doc: add Baerenreiter and Henle solo cello suites

Added comparison of solo cello suite engravings to new essay with

high-res images, fixed cropping on Finale example.

Commit messages often start with a short prefix describing the general location of the changes.

• Doc: and Doc-** : If a commit affects the documentation in English (or in several languages
simultaneously) the commit message should be prefixed with “Doc: ”. If the commit affects
only one of the translations, the commit message should be prefixed with “Doc-** : ”, where
** is the two-letter language code.

• Web: and Web-** : Commits that affect the website should use “Web: ” for English, and
“Web-** : ” for other languages.

• CSS: Commits that change CSS files should use “Web: CSS: ” or “Doc: CSS: ” depending
on whether they affect the website or the documentation/manuals.

• Changes to a single file are often prefixed with the name of the file involved.

Visit the links listed in [Understanding commits], page 25, for examples.

3.3.5 Patches

How to make a patch

If you want to share your changes with other contributors and developers, you need to generate
patches from your commits. We prefer it if you follow the instructions in Section 3.3.6 [Uploading
a patch for review], page 27. However, we present an alternate method here.
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You should always run git pull -r (translators should leave off the -r) before doing this
to ensure that your patches are as current as possible.

Once you have made one or more commits in your local repository, and pulled the most
recent commits from the remote branch, you can generate patches from your local commits with
the command:

git format-patch origin

The origin argument refers to the remote tracking branch at git.sv.gnu.org. This com-
mand generates a separate patch for each commit that’s in the current branch but not in the
remote branch. Patches are placed in the current working directory and will have names that
look something like this:

0001-Doc-Fix-typos.patch

0002-Web-Remove-dead-links.patch

Send an email (must be less than 64 KB) to lilypond-devel@gnu.org briefly
explaining your work, with the patch files attached. Translators should send patches to
translations@lilynet.net. After your patches are reviewed, the developers may push one or
more of them to the main repository or discuss them with you.

Emailing patches

The default x-diff MIME type associated with patch files (i.e., files whose name ends in .patch)
means that the encoding of line endings may be changed from UNIX to DOS format when they
are sent as attachments. Attempting to apply such an inadvertently altered patch will cause git
to fail with a message about ‘whitespace errors’.

The solution to such problems is surprisingly simple—just change the default file extension
of patches generated by git to end in .txt, for example:

git config format.suffix '.patch.txt'

This should cause email programs to apply the correct base64 encoding to attached patches.

If you receive a patch with DOS instead of UNIX line-endings, it can be converted back using
the dos2unix utility.

Lots of useful information on email complications with patches is provided on the Wine wiki
at http://wiki.winehq.org/GitWine.

3.3.6 Uploading a patch for review

Any non-trivial change should be uploaded to our “Rietveld” code review website:

http://codereview.appspot.com/

You can upload a patch for review by using our custom git-cl ‘helper-script’. This section
assumes you have already installed, updated, and configured git-cl. See Section 2.3 [git-cl],
page 9.

☛ ✟

Note: Unless you are familiar with branches, only work on one set of
changes at once.
✡ ✠

There are two methods, depending on your git setup.

• Master branch: (easy option)

If you added your patch to master, then:

git pull -r

git-cl upload origin/master

mailto:lilypond-devel@gnu.org
mailto:translations@lilynet.net
http://wiki.winehq.org/GitWine
http://codereview.appspot.com/
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If you have git push ability, make sure that you remove your patch (with git rebase or
git reset) before pushing other stuff.

Notifications of patches are automatically added to our issue tracker to reduce the chance of
patches getting lost. To suppress this (not recommended), add the -n / --no-code-issue

option.

• Separate branch: (complicated option)

Ensure your changes are committed in a separate branch, which should differ from the
reference branch to be used (usually origin/master) by just the changes to be uploaded.
Checkout the branch with the changes:

git checkout some-branch-with-changes

If the reference branch is to be origin/master, ensure that the branch containing the
changes is up-to-date with it. Use git rebase or git pull -r to rebase the branch to the
head of origin/master. For example:

git pull -r origin master

Finally, start the upload by entering:

git-cl upload <reference SHA1 ID>

where <reference SHA1 ID> is the SHA1 ID of the commit to be used as a reference source
for the patch. Generally, this will be the SHA1 ID of origin/master, and in that case you
can just use the command:

git-cl upload origin/master

First you will see a terminal editor where you can edit the message that will accompany your
patch. git-cl will respect the EDITOR environment variable if defined, otherwise it will use vi

as the default editor.

After prompting for your Google email address and password, the patch set will be posted
to Rietveld, and you will be given a URL for your patch.

☛ ✟

Note: Some installations of git-cl fail when uploading a patch with
certain filename extensions. If this happens, it can generally be fixed
by editing the list of exceptions at top of git-cl.py.
✡ ✠

Announcing your patch set

You should then announce the patch by logging into the code review issue webpage and using
“Publish + Mail Comments” to add a (mostly bogus) comment to your issue. The text of your
comment will be sent to our developer mailing list.

☛ ✟

Note: There is no automatic notification of a new patch; you must add
a comment yourself.
✡ ✠

Revisions

As revisions are made in response to comments, successive patch sets for the same issue can be
uploaded by reissuing the git-cl command with the modified branch checked out.

Sometimes in response to comments on revisions, the best way to work may require creation
of a new branch in git. In order to associate the new branch with an existing Rietveld issue, the
following command can be used:

git-cl issue issue-number

where issue-number is the number of the existing Rietveld issue.
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Resetting git-cl

If git-cl becomes confused, you can “reset” it by running:

git-cl issue 0

3.3.7 The patch review cycle

Your patch will be available for reviews for the next few hours or days. Three times a week,
patches with no known problems are gathered into a “patch countdown” and their status changed
to patch-countdown. The countdown is a 48-hour waiting period in which any final reviews or
complaints should be made.

During the countdown, your patch may be set to patch-needs_work, indicating that you
should fix something (or at least discuss why the patch needs no modification). If no problems
are found, the patch will be set to patch-push.

Once a patch has patch-push, it should be sent to your mentor for uploading. If you have
git push ability, look at Section 3.4.10 [Pushing to staging], page 35.

• Patches get added to the tracker and to Rietveld by the “git-cl” tool, with a status of
“patch-new”.

• The automated tester, Patchy, verifies that the patch can be applied to current master. By
default, it checks that the patch allows make and make test to complete successfully. It
can also be configured to check that make doc is successful. If it passes, Patchy changes the
status to “patch-review” and emails the developer list. If the patch fails, Patchy sets it to
“patch-needs work” and notifies the developer list.

• The Patch Meister reviews the tracker periodically, to list patches which have been on
review for at least 24 hours. The list is found at

https://sourceforge.net/p/testlilyissues/issues/search/?q=status%3AStarted+AND+_patch%3Areview

• For each patch, the Handler reviews any discussion on the tracker and on Rietveld, to de-
termine whether the patch can go forward. If there is any indication that a developer thinks
the patch is not ready, the Handler marks it “patch-needs work” and makes a comment
regarding the reason, referring to the Rietveld item if needed.

• Patches with explicit approval, or at least no negative comment, can be updated to “patch-
countdown”. When saving the tracker item, clear the “send email” box to prevent sending
notification for each patch.

• The Patch Meister sends an email to the developer list, with a fixed subject line, to enable
filtering by email clients:

PATCH: Countdown to 20130113

The text of the email sets the deadline for this countdown batch. At present, batches are
done on Tuesday, Thursday and Sunday evenings.

• On the scheduled countdown day, the Patch Meister reviews the previous list of patches on
countdown, with the same procedure and criteria as before. Patches with no controversy
can be set to “patch-push” with a courtesy message added to the comment block.

• Roughly at six month intervals, the Patch Meister can list the patches which have been
set to “patch-needs-work” and send the results to the developer list for review. In most
cases, these patches should be marked “patch-abandoned” but this should come from the
developer if possible.

• As in most organisations of unpaid volunteers, fixed procedures are useful in as much as they
get the job done. In our community, there is room for senior developers to bypass normal
patch handling flows, particularly now that the testing of patches is largely automated.
Similarly, the minimum age of 24 hours can reasonably be waived if the patch is minor and
from an experienced developer.

https://sourceforge.net/p/testlilyissues/issues/search/?q=status%3AStarted+AND+_patch%3Areview
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3.4 Advanced Git procedures
☛ ✟

Note: This section is not necessary for normal contributors; these com-
mands are presented for information for people interested in learning
more about git.
✡ ✠

It is possible to work with several branches on the same local Git repository; this is especially
useful for translators who may have to deal with both translation and a stable branch, e.g.
stable/2.12.

Some Git commands are introduced first, then a workflow with several Git branches of
LilyPond source code is presented.

3.4.1 Merge conflicts

To be filled in later, and/or moved to a different section. I just wanted to make sure that I had
a stub ready somewhere.

3.4.2 Advanced Git concepts

A bit of Git vocabulary will be explained below. The following is only introductory; for a better
understanding of Git concepts, you may wish to read Section 3.7 [Other Git documentation],
page 43.

The git pull origin command above is just a shortcut for this command:

git pull git://git.sv.gnu.org/lilypond.git/ branch:origin/branch

where branch is typically master or translation; if you do not know or remember, see
Section 3.2.4 [Downloading remote branches], page 21, to remember which commands you issued
or which source code you wanted to get.

A commit is a set of changes made to the sources; it also includes the committish of the parent
commit, the name and e-mail of the author (the person who wrote the changes), the name and
e-mail of the committer (the person who brings these changes into the Git repository), and a
commit message.

A committish is the SHA1 checksum of a commit, a number made of 40 hexadecimal digits,
which acts as the internal unique identifier for this commit. To refer to a particular revision,
don’t use vague references like the (approximative) date, simply copy and paste the committish.

A branch is nothing more than a pointer to a particular commit, which is called the head
of the branch; when referring to a branch, one often actually thinks about its head and the
ancestor commits of the head.

Now we will explain the two last commands you used to get the source code from Git—see
[Downloading individual branches], page 21.

git remote add -ft branch -m branch \

origin git://git.sv.gnu.org/lilypond.git/

git checkout -b branch origin/branch

The git remote has created a branch called origin/branch in your local Git repository.
As this branch is a copy of the remote branch web from git.sv.gnu.org LilyPond repository, it is
called a remote branch, and is meant to track the changes on the branch from git.sv.gnu.org: it
will be updated every time you run git pull origin or git fetch origin.

The git checkout command has created a branch named branch. At the beginning, this
branch is identical to origin/branch, but it will differ as soon as you make changes, e.g. adding
newly translated pages or editing some documentation or code source file. Whenever you pull,
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you merge the changes from origin/branch and branch since the last pulling. If you do not have
push (i.e. “write”) access on git.sv.gnu.org, your branch will always differ from origin/branch.
In this case, remember that other people working like you with the remote branch branch of
git://git.sv.gnu.org/lilypond.git/ (called origin/branch on your local repository) know nothing
about your own branch: this means that whenever you use a committish or make a patch, others
expect you to take the latest commit of origin/branch as a reference.

Finally, please remember to read the man page of every Git command you will find in this
manual in case you want to discover alternate methods or just understand how it works.

3.4.3 Resolving conflicts

Occasionally an update may result in conflicts – this happens when you and somebody else have
modified the same part of the same file and git cannot figure out how to merge the two versions
together. When this happens, you must manually merge the two versions.

If you need some documentation to understand and resolve conflicts, see paragraphs How
conflicts are presented and How to resolve conflicts in git merge man page.

If all else fails, you can follow the instructions in Section 3.4.4 [Reverting all local changes],
page 31. Be aware that this eliminates any changes you have made!

3.4.4 Reverting all local changes

Sometimes git will become hopelessly confused, and you just want to get back to a known, stable
state. This command destroys any local changes you have made in the currently checked-out
branch, but at least you get back to the current online version:

git reset --hard origin/master

3.4.5 Working with remote branches

Fetching new branches from git.sv.gnu.org

To fetch and check out a new branch named branch on git.sv.gnu.org, run from top of the Git
repository

git config --add remote.origin.fetch \

+refs/heads/branch:refs/remotes/origin/branch

git checkout --track -b branch origin/branch

After this, you can pull branch from git.sv.gnu.org with:

git pull

Note that this command generally fetches all branches you added with git remote add

(when you initialized the repository) or git config --add, i.e. it updates all remote branches
from remote origin, then it merges the remote branch tracked by the current branch into the
current branch. For example, if your current branch is master, origin/master will be merged
into master.

Local clones, or having several working trees

If you play with several Git branches, e.g. master, translation, stable/2.12), you may want
to have one source and build tree for each branch; this is possible with subdirectories of your
local Git repository, used as local cloned subrepositories. To create a local clone for the branch
named branch, run

git checkout branch

git clone -lsn . subdir

cd subdir
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git reset --hard

Note that subdir must be a directory name which does not already exist. In subdir, you
can use all Git commands to browse revisions history, commit and uncommit changes; to update
the cloned subrepository with changes made on the main repository, cd into subdir and run
git pull; to send changes made on the subrepository back to the main repository, run git push

from subdir. Note that only one branch (the currently checked out branch) is created in the
subrepository by default; it is possible to have several branches in a subrepository and do usual
operations (checkout, merge, create, delete...) on these branches, but this possibility is not
detailed here.

When you push branch from subdir to the main repository, and branch is checked
out in the main repository, you must save uncommitted changes (see git stash) and do
git reset --hard in the main repository in order to apply pushed changes in the working
tree of the main repository.

3.4.6 Git log

The commands above don’t only bring you the latest version of the sources, but also the full
history of revisions (revisions, also called commits, are changes made to the sources), stored in
the .git directory. You can browse this history with

git log # only shows the logs (author, committish and commit message)

git log -p # also shows diffs

gitk # shows history graphically
☛ ✟

Note: The gitk command may require a separate gitk package, avail-
able in the appropriate distribution’s repositories.
✡ ✠

3.4.7 Applying remote patches

TODO: Explain how to determine if a patch was created with git format-patch.

Well-formed git patches created with git format-patch should be committed with the fol-
lowing command:

git am patch

Patches created without git format-patch can be applied in two steps. The first step is to
apply the patch to the working tree and the index:

git apply --index patch

The second step is to commit the changes and give credit to the author of the patch. This can
be done with the following command:

git commit --author="John Smith <john@example.com>"

Please note that using the --index option for patching is quite important here and cannot
reliably be replaced by using the -a option when committing: that would only commit files
from the working tree that are already registered with git, so every file that the patch actually
adds, like a regtest for a fixed bug, would get lost. For the same reason, you should not use the
git-independent ‘patch’ program for applying patches.

3.4.8 Cleaning up multiple patches

If you have been developing on your own branch for a while, you may have more commmits than
is really sensible. To revise your work and condense commits, use:

git rebase origin/master

git rebase -i origin/master
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☛ ✟

Note: Be a bit cautious – if you completely remove commits during the
interactive session, you will... err... completely remove those commits.
✡ ✠

3.4.9 Commit access

Most contributors are not able to commit patches directly to the main repository—only mem-
bers of the LilyPond development team have commit access. If you are a contributor and are
interested in joining the development team, contact the Project Manager through the mailing list
(lilypond-devel@gnu.org). Generally, only contributors who have already provided a number
of patches which have been pushed to the main repository will be considered for membership.

If you have been approved by the Project Manager, use the following procedure to obtain
commit access:

1. If you don’t already have one, set up a Savannah user account at https://savannah.gnu.
org/account/register.php.

☛ ✟

Note: Savannah will silently put your username in lower-case – do
not try to use capital letters.
✡ ✠

2. After registering, if you are not logged in automatically, login at https://savannah.gnu.

org/account/login.php—this should take you to your “my” page (https://savannah.
gnu.org/my/).

3. Click on the “My Groups” link to access the “My Group Membership” page. From there,
find the “Request for Inclusion” box and search for “LilyPond”. Among the search results,
check the box labeled “GNU LilyPond Music Typesetter” and write a brief (required)
message for the Project Manager (“Hey it’s me!” should be fine).

Note that you will not have commit access until the Project Manager activates your mem-
bership. Once your membership is activated, LilyPond should appear under the heading
“Groups I’m Contributor of” on your “My Group Membership” page.

4. Generate an SSH ‘rsa’ key pair. Enter the following at the command prompt:

ssh-keygen -t rsa

When prompted for a location to save the key, press <ENTER> to accept the default location
(~/.ssh/id_rsa).

Next you are asked to enter an optional passphrase. On most systems, if you use a
passphrase, you will likely be prompted for it every time you use git push or git pull.
You may prefer this since it can protect you from your own mistakes (like pushing when
you mean to pull), though you may find it tedious to keep re-entering it.

You can change/enable/disable your passphrase at any time with:

ssh-keygen -f ~/.ssh/id_rsa -p

Note that the GNOME desktop has a feature which stores your passphrase for you for
an entire GNOME session. If you use a passphrase to “protect you from yourself”, you
will want to disable this feature, since you’ll only be prompted once. Run the following
command, then logout of GNOME and log back in:

gconftool-2 --set -t bool \

/apps/gnome-keyring/daemon-components/ssh false

After setting up your passphrase, your private key is saved as ~/.ssh/id_rsa and your
public key is saved as ~/.ssh/id_rsa.pub.

5. Register your public SSH ‘rsa’ key with Savannah. From the “My Account Configuration”
page, click on “Edit SSH Keys”, then paste the contents of your ~/.ssh/id_rsa.pub file
into one of the “Authorized keys” text fields, and click “Update”.

Savannah should respond with something like:

Success: Key #1 seen Keys registered

mailto:lilypond-devel@gnu.org
https://savannah.gnu.org/account/register.php
https://savannah.gnu.org/account/register.php
https://savannah.gnu.org/account/login.php
https://savannah.gnu.org/account/login.php
https://savannah.gnu.org/my/
https://savannah.gnu.org/my/
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6. Configure Git to use the SSH protocol (instead of the GIT protocol). From your local Git
repository, enter:

git remote set-url origin ssh://user@git.sv.gnu.org/srv/git/lilypond.git

replacing user with your Savannah username.

7. After your membership has been activated and you’ve configured Git to use SSH, test the
connection with:

git pull --verbose

SSH should issue the following warning:

The authenticity of host 'git.sv.gnu.org (140.186.70.72)' can't

be established.

RSA key fingerprint is

80:5a:b0:0c:ec:93:66:29:49:7e:04:2b:fd:ba:2c:d5.

Are you sure you want to continue connecting (yes/no)?

Make sure the RSA key fingerprint displayed matches the one above. If it doesn’t, respond
“no” and check that you configured Git properly in the previous step. If it does match,
respond “yes”. SSH should then issue another warning:

Warning: Permanently added 'git.sv.gnu.org,140.186.70.72' (RSA) to

the list of known hosts.

The list of known hosts is stored in the file ~/.ssh/known_hosts.

At this point, you are prompted for your passphrase if you have one, then Git will attempt
a pull.

If git pull --verbose fails, you should see error messages like these:

Permission denied (publickey).

fatal: The remote end hung up unexpectedly

If you get the above error, you may have made a mistake when registering your SSH key at
Savannah. If the key is properly registered, you probably just need to wait for the Savannah
server to activate it. It usually takes a few minutes for the key to be active after registering
it, but if it still doesn’t work after an hour, ask for help on the mailing list.

If git pull --verbose succeeds, the output will include a ‘From’ line that shows ‘ssh’ as
the protocol:

From ssh://git.sv.gnu.org/srv/git/lilypond

If the protocol shown is not ‘ssh’, check that you configured Git properly in the previous
step.

8. Test your commit access with a dry run:
☛ ✟

Note: Do not push directly to master; instead, push to staging. See
Section 3.4.10 [Pushing to staging], page 35.
✡ ✠

git push --dry-run --verbose

Note that recent versions of Git (Git 1.6.3 or later) will issue a big warning if the above
command is used. The simplest solution is to tell Git to push all matching branches by
default:

git config push.default matching

Then git push should work as before. For more details, consult the git push man page.

9. Repeat the steps from generating an RSA key through to testing your commit access, for
each machine from which you will be making commits, or you may simply copy the files
from your local ~/.ssh folder to the same folder on the other machine.



Chapter 3: Working with source code 35

Technical details

• The git remote set-url command above should modify your local repository’s
.git/config file. These lines:

[remote "origin"]

url = git://git.sv.gnu.org/lilypond.git/

should now be changed to:

[remote "origin"]

url = ssh://user@git.sv.gnu.org/srv/git/lilypond.git

where user is your login name on Savannah.

• Similarly, the git config push.default matching command should add these lines to
.git/config:

[push]

default = matching

Known issues and warnings

Encryption protocols, including ssh, generally do not permit packet fragmentation to avoid
introducing a point of insecurity. This means that the maximum packet size must not exceed
the smallest MTU (Maximum Transmission Unit) set in the routers along the path. This smallest
MTU is determined by a procedure during call set-up which relies on the transmission over the
path of ICMP packets. If any of the routers in the path block ICMP packets this mechanism
fails, resulting in the possibility of packets being transmitted which exceed the MTU of one of
the routers. If this happens the packet is discarded, causing the ssh session to hang, timeout or
terminate with the error message

ssh: connect to host <host ip addr> port 22: Bad file number

fatal: The remote end hung up unexpectedly

depending on precisely when in the proceedings the first large packet is transmitted. Most
routers on the internet have MTU set to 1500, but routers installed in homes to connect via
broadband may use a slightly smaller MTU for efficient transmission over ATM. If this problem
is encountered a possible work-around is to set the MTU in the local router to 1500.

3.4.10 Pushing to staging

Do not push directly to the git master branch. Instead, push to staging.

You will not see your patch on origin/master until some automatic tests have been run.
These tests are run every couple of hours; please wait at least 12 hours before wondering if your
patch has been lost. Note that you can check the commits on origin/staging by looking at
the git web interface on savannah.

It may happen occasionally that the staging branch breaks automated testing. In this case
the automatic move of staging material to master gets halted in order to avoid broken material
entering master. This is a safety net. Please do not try breaking out from it by adding fixes
on top of staging: in that case the whole sequence will end up in master after all, defeating the
purpose of the system. The proper fix usually involves rewriting the staging branch and is best
left to core developers after discussion on the developer list.

Before pushing to staging it is a good practice to check whether staging is ahead of master,
and if so, wait until master has caught up with staging before pushing. This simplifies things if
changes to staging have to be backed out for some reason. To check whether master has caught
up with staging you can look at the git web interface on savannah, or do:

git fetch

gitk
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and check that origin/master is at the same commit as origin/staging. Another option
is to see if any commits are listed when you do:

git fetch

git log origin/master..origin/staging

If your work is in a patch file

Assuming that your patch is in a file called 0001-my-patch.patch (see Section 3.3.5 [Patches],
page 26), and you are currently on git master, do:

git checkout staging

git pull -r

git am 0001-my-patch.patch

gitk

git push origin staging

git checkout master
☛ ✟

Note: Do not skip the gitk step; a quick 5-second check of the visual
history can save a great deal of frustration later on. You should only
see that staging is only 1 commit ahead of origin/staging.
✡ ✠

If your work is in a branch

If you are working on branches and your work is in my_branch_name, then do:

git checkout my_branch_name

git pull -r origin staging

This will rebase your branch on origin/staging. At this point git will let you know if there
are any conflicts. If so, resolve them before continuing:

gitk

git push origin HEAD:staging
☛ ✟

Note: Do not skip the gitk step; a quick 5-second check of the visual
history can save a great deal of frustration later on. You should see that
my_branch_name is only ahead of origin/staging by the commits from
your branch.
✡ ✠

3.5 Git on Windows
☛ ✟

Note: We heavily recommend that development be done with our virtual
machine Section 2.1 [LilyDev], page 5.
✡ ✠

TODO: Decide what to do with this... Pare it down? Move paragraphs next to analogous
Unix instructions? -mp

3.5.1 Background to nomenclature

Git is a system for tracking the changes made to source files by a distributed set of editors. It is
designed to work without a master repository, but we have chosen to have a master repository
for LilyPond files. Editors hold a local copy of the master repository together with any changes
they have made locally. Local changes are held in a local ‘branch’, of which there may be several,
but these instructions assume you are using just one. The files visible in the local repository
always correspond to those on the currently ‘checked out’ local branch.
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Files are edited on a local branch, and in that state the changes are said to be ‘unstaged’.
When editing is complete, the changes are moved to being ‘staged for commit’, and finally the
changes are ‘committed’ to the local branch. Once committed, the changes (called a ‘commit’)
are given a unique 40-digit hexadecimal reference number called the ‘Committish’ or ‘SHA1 ID’
which identifies the commit to Git. Such committed changes can be sent to the master repository
by ‘pushing’ them (if you have write permission) or by sending them by email to someone who
has, either as a complete file or as a ‘diff’ or ‘patch’ (which send just the differences from the
master repository).

3.5.2 Installing git

Obtain Git from https://git-for-windows.github.io/.

Note that most users will not need to install SSH. That is not required until you have been
granted direct push permissions to the master git repository.

Start Git by clicking on the desktop icon. This will bring up a command line bash shell.
This may be unfamiliar to Windows users. If so, follow these instructions carefully. Commands
are entered at a $ prompt and are terminated by keying a newline.

3.5.3 Initialising Git

Decide where you wish to place your local Git repository, creating the folders in Windows as
necessary. Here we call the folder to contain the repository [path]/Git, but if you intend using
Git for other projects a directory name like lilypond-git might be better. You will need to
have space for around 100Mbytes.

Start the Git bash shell by clicking on the desk-top icon installed with Git and type

cd [path]/Git

to position the shell at your new Git repository.

Note: if [path] contains folders with names containing spaces use

cd "[path]/Git"

Then type

git init

to initialize your Git repository.

Then type (all on one line; the shell will wrap automatically)

git remote add -ft master origin git://git.sv.gnu.org/lilypond.git

to download the lilypond master files.
☛ ✟

Note: Be patient! Even on a broadband connection this can take 10
minutes or more. Wait for lots of [new tag] messages and the $ prompt.
✡ ✠

We now need to generate a local copy of the downloaded files in a new local branch. Your
local branch needs to have a name. It is usual to call it ‘master’ and we shall do that here.

To do this, type

git checkout -b master origin/master

This creates a second branch called ‘master’. You will see two warnings (ignore these), and
a message advising you that your local branch ‘master’ has been set up to track the remote
branch. You now have two branches, a local branch called ‘master’, and a tracking branch
called ‘origin/master’, which is a shortened form of ‘remotes/origin/master’.

Return to Windows Explorer and look in your Git repository. You should see lots of folders.
For example, the LilyPond documentation can be found in [path]/Git/Documentation/.

The Git bash shell is terminated by typing exit or by clicking on the usual Windows close-
window widget.

https://git-for-windows.github.io/
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3.5.4 Git GUI

Almost all subsequent work will use the Git Graphical User Interface, which avoids having to
type command line commands. To start Git GUI first start the Git bash shell by clicking on
the desktop icon, and type

cd [path]/Git

git gui

The Git GUI will open in a new window. It contains four panels and 7 pull-down menus. At
this stage do not use any of the commands under Branch, Commit, Merge or Remote. These
will be explained later.

The top panel on the left contains the names of files which you are in the process of editing
(Unstaged Changes), and the lower panel on the left contains the names of files you have finished
editing and have staged ready for committing (Staged Changes). At present, these panels will
be empty as you have not yet made any changes to any file. After a file has been edited and
saved the top panel on the right will display the differences between the edited file selected in
one of the panels on the left and the last version committed on the current branch.

The panel at bottom right is used to enter a descriptive message about the change before
committing it.

The Git GUI is terminated by entering CNTL-Q while it is the active window or by clicking
on the usual Windows close-window widget.

3.5.5 Personalising your local git repository

Open the Git GUI, click on

Edit -> Options

and enter your name and email address in the left-hand (Git Repository) panel. Leave
everything else unchanged and save it.

Note that Windows users must leave the default setting for line endings unchanged. All files
in a git repository must have lines terminated by just a LF, as this is required for Merge to work,
but Windows files are terminated by CRLF by default. The git default setting causes the line
endings of files in a Windows git repository to be flipped automatically between LF and CRLF
as required. This enables files to be edited by any Windows editor without causing problems in
the git repository.

3.5.6 Checking out a branch

At this stage you have two branches in your local repository, both identical. To see them click
on

Branch -> Checkout

You should have one local branch called ‘master’ and one tracking branch called ‘ori-
gin/master’. The latter is your local copy of the ‘remotes/origin/master’ branch in the master
LilyPond repository. The local ‘master’ branch is where you will make your local changes.

When a particular branch is selected, i.e., checked out, the files visible in your repository are
changed to reflect the state of the files on that branch.

3.5.7 Updating files from ‘remote/origin/master’

Before starting the editing of a file, ensure your local repository contains the latest version of
the files in the remote repository by first clicking

Remote -> Fetch from -> origin

in the Git GUI.
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This will place the latest version of every file, including all the changes made by others, into
the ‘origin/master’ branch of the tracking branches in your git repository. You can see these
files by checking out this branch, but you must never edit any files while this branch is checked
out. Check out your local ‘master’ branch again.

You then need to merge these fetched files into your local ‘master’ branch by clicking on

Merge -> Local Merge

and if necessary select the local ‘master’ branch.

Note that a merge cannot be completed if you have made any local changes which have not
yet been committed.

This merge will update all the files in the ‘master’ branch to reflect the current state of
the ‘origin/master’ branch. If any of the changes conflict with changes you have made yourself
recently you will be notified of the conflict (see below).

3.5.8 Editing files

First ensure your ‘master’ branch is checked out, then simply edit the files in your local Git
repository with your favourite editor and save them back there. If any file contains non-ASCII
characters ensure you save it in UTF-8 format. Git will detect any changes whenever you restart
Git GUI and the file names will then be listed in the Unstaged Changes panel. Or you can click
the Rescan button to refresh the panel contents at any time. You may break off and resume
editing any time.

The changes you have made may be displayed in diff form in the top right-hand panel of Git
GUI by clicking on the file name shown in one of the left panels.

When your editing is complete, move the files from being Unstaged to Staged by clicking the
document symbol to the left of each name. If you change your mind it can be moved back by
clicking on the ticked box to the left of the name.

Finally the changes you have made may be committed to your ‘master’ branch by entering a
brief message in the Commit Message box and clicking the Commit button.

If you wish to amend your changes after a commit has been made, the original version and
the changes you made in that commit may be recovered by selecting

Commit -> Amend Last Commit

or by checking the Amend Last Commit radio button at bottom right. This will return the
changes to the Staged state, so further editing made be carried out within that commit. This
must only be done before the changes have been Pushed or sent to your mentor for Pushing -
after that it is too late and corrections have to be made as a separate commit.

3.5.9 Sending changes to ‘remotes/origin/master’

If you do not have write access to ‘remotes/origin/master’ you will need to send your changes
by email to someone who does.

First you need to create a diff or patch file containing your changes. To create this, the file
must first be committed. Then terminate the Git GUI. In the git bash shell first cd to your Git
repository with

cd [path]/Git

if necessary, then produce the patch with

git format-patch origin

This will create a patch file for all the locally committed files which differ from ‘origin/master’.
The patch file can be found in [path]/Git and will have a name formed from the commit message.
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3.5.10 Resolving merge conflicts

As soon as you have committed a changed file your local master branch has diverged
from origin/master, and will remain diverged until your changes have been committed in
remotes/origin/master and Fetched back into your origin/master branch. Similarly, if a
new commit has been made to remotes/origin/master by someone else and Fetched, your
local master branch is divergent. You can detect a divergent branch by clicking on

Repository -> Visualise all branch history

This opens up a very useful new window called ‘gitk’. Use this to browse all the commits
made by yourself and others.

If the diagram at top left of the resulting window does not show your master tag on the
same node as the remotes/origin/master tag your branch has diverged from origin/master.
This is quite normal if files you have modified yourself have not yet been Pushed to
remotes/origin/master and Fetched, or if files modified and committed by others have been
Fetched since you last Merged origin/master into your local master branch.

If a file being merged from origin/master differs from one you have modified in a way that
cannot be resolved automatically by git, Merge will report a Conflict which you must resolve by
editing the file to create the version you wish to keep.

This could happen if the person updating remotes/origin/master for you has added some
changes of his own before committing your changes to remotes/origin/master, or if someone
else has changed the same file since you last fetched the file from remotes/origin/master.

Open the file in your editor and look for sections which are delimited with ...

[to be completed when I next have a merge conflict to be sure I give the right instructions
-td]

3.5.11 Other actions

The instructions above describe the simplest way of using git on Windows. Other git facilities
which may usefully supplement these include

• Using multiple local branches (Create, Rename, Delete)

• Resetting branches

• Cherry-picking commits

• Pushing commits to remote/origin/master

• Using gitk to review history

Once familiarity with using git on Windows has been gained the standard git manuals can
be used to learn about these.

3.6 Repository directory structure

Prebuilt Documentation and packages are available from:

http://www.lilypond.org

LilyPond development is hosted at:

http://savannah.gnu.org/projects/lilypond

Here is a simple explanation of the directory layout for

LilyPond's source files.
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. Toplevel READMEs, ChangeLog,

| build bootstrapping, patches

| for third party programs

|

|-- Documentation/ Top sources for most of the manuals

| |

| |

| | INDIVIDUAL CHAPTERS FOR EACH MANUAL:

| | Note: "Snippets" and "Internals Reference" are

| | auto-generated during the Documentation Build process.

| |

| |

| |-- contributor/ Contributor's Guide

| |-- essay/ Essay on automated music engraving

| |-- extending/ Extending the functionality of LilyPond

| |-- learning/ Learning Manual

| |-- notation/ Notation Reference

| |-- usage/ Runnning the programs that come with LilyPond

| |-- web/ The website

| |

| |

| | TRANSLATED MANUALS:

| | Each language's directory can contain...

| | 1) translated versions of:

| | * top sources for manuals

| | * individual chapters for each manual

| | 2) a texidocs/ directory for snippet translations

| |

| |-- ca/ Catalan

| |-- cs/ Czech

| |-- de/ German

| |-- es/ Spanish

| |-- fr/ French

| |-- hu/ Hungarian

| |-- it/ Italian

| |-- ja/ Japanese

| |-- nl/ Dutch

| |-- pt/ Portuguese

| |-- zh/ Chinese

| |

| |

| | MISCELLANEOUS DOC STUFF:

| |

| |-- css/ CSS files for HTML docs

| |-- included/ .ly files used in the manuals

| |-- logo/ Web logo and "note" icon

| |-- ly-examples/ .ly files for the "Examples" webpage

| |-- misc/ Old announcements, ChangeLogs and NEWS

| |-- pictures/ Images used (eps/jpg/png/svg)

| | `-- pdf/ (pdf)

| |-- po/ Translated build/maintenance scripts

| |-- snippets/ Auto-generated from the LSR and from ./new/
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| | `-- new/ Snippets too new for the LSR

| `-- topdocs/ AUTHORS, INSTALL, README

|

|

| C++ SOURCES:

|

|-- flower/ A simple C++ library

|-- lily/ C++ sources for the LilyPond binary

|

|

| LIBRARIES:

|

|-- ly/ .ly \include files

|-- mf/ MetaFont sources for Emmentaler fonts

|-- ps/ PostScript library files

|-- scm/ Scheme sources for LilyPond and subroutine files

|-- tex/ TeX and texinfo library files

|

|

| SCRIPTS:

|

|-- config/ Autoconf helpers for configure script

|-- python/ Python modules, MIDI module

| `-- auxiliar/ Python modules for build/maintenance

|-- scripts/ End-user scripts (--> lilypond/usr/bin/)

| |-- auxiliar/ Maintenance and non-essential build scripts

| `-- build/ Essential build scripts

|

|

| BUILD PROCESS:

| (also see SCRIPTS section above)

|

|-- make/ Specific make subroutine files

|-- stepmake/ Generic make subroutine files

|

|

| REGRESSION TESTS:

|

|-- input/

| `-- regression/ .ly regression tests

| |-- abc2ly/ .abc regression tests

| |-- lilypond-book/ lilypond-book regression tests

| |-- midi/ midi2ly regression tests

| `-- musicxml/ .xml and .itexi regression tests

|

|

| MISCELLANEOUS:

|

|-- elisp/ Emacs LilyPond mode and syntax coloring

|-- vim/ Vi(M) LilyPond mode and syntax coloring

`-- po/ Translations for binaries and end-user scripts
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3.7 Other Git documentation

• Official git man pages: http://www.kernel.org/pub/software/scm/git/docs/

• More in-depth tutorials: http://git-scm.com/documentation

• Book about git: Pro Git (http://progit.org/)

• Github help: http://help.github.com/ (very highly recommended by Graham)

http://www.kernel.org/pub/software/scm/git/docs/
http://git-scm.com/documentation
http://progit.org/
http://help.github.com/
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4 Compiling

This chapter describes the process of compiling the LilyPond program from source files.

4.1 Overview of compiling

Compiling LilyPond from source is an involved process, and is only recommended for developers
and packagers. Typical program users are instead encouraged to obtain the program from a
package manager (on Unix) or by downloading a precompiled binary configured for a specific
operating system. Pre-compiled binaries are available on the Section “Download” in General

Information page.

Compiling LilyPond from source is necessary if you want to build, install, or test your own
version of the program.

A successful compile can also be used to generate and install the documentation, incorpo-
rating any changes you may have made. However, a successful compile is not a requirement
for generating the documentation. The documentation can be built using a Git repository in
conjunction with a locally installed copy of the program. For more information, see [Building
documentation without compiling], page 55.

Attempts to compile LilyPond natively on Windows have been unsuccessful, though a
workaround is available (see Section “LilyDev” in Contributor’s Guide).

4.2 Requirements

4.2.1 Requirements for running LilyPond

This section contains the list of separate software packages that are required to run LilyPond.

• DejaVu fonts (http://www.dejavu-fonts.org/) These are normally installed by default.

• FontConfig (http://www.fontconfig.org/) Use version 2.4.0 or newer.

• Freetype (http://www.freetype.org/) Use version 2.1.10 or newer.

• Ghostscript (http://www.ghostscript.com) Use version 8.60 or newer.

• Guile (http://www.gnu.org/software/guile/guile.html) Use version 1.8.8. Version 2.x
of Guile is not currently supported.

• Pango (http://www.pango.org/) User version 1.12 or newer.

• Python (http://www.python.org) Use version 2.4 or newer.

• International fonts. For example:

Fedora:

fonts-arabic

fonts-hebrew

fonts-ja

fonts-xorg-truetype

taipeifonts

ttfonts-ja

ttfonts-zh_CN

Debian based distributions:

emacs-intl-fonts

fonts-ipafont-gothic

fonts-ipafont-mincho

xfonts-bolkhov-75dpi

xfonts-cronyx-75dpi

http://www.dejavu-fonts.org/
http://www.fontconfig.org/
http://www.freetype.org/
http://www.ghostscript.com
http://www.gnu.org/software/guile/guile.html
http://www.pango.org/
http://www.python.org
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xfonts-cronyx-100dpi

xfonts-intl-.*

These are normally installed by default and are required only to create music with interna-
tional text or lyrics.

4.2.2 Requirements for compiling LilyPond

This section contains instructions on how to quickly and easily get all the software packages
required to build LilyPond.

Most of the more popular Linux distributions only require a few simple commands to down-
load all the software needed. For others, there is an explicit list of all the individual packages
(as well as where to get them from) for those that are not already included in your distributions’
own repositories.

Fedora

The following instructions were tested on ‘Fedora’ versions 22 & 23 and will download all the
software required to both compile LilyPond and build the documentation.

• Download and install all the LilyPond build-dependencies (approximately 700MB);

sudo dnf builddep lilypond --nogpgcheck

• Download and install additional ‘build’ tools required for compiling;

sudo dnf install autoconf gcc-c++

• Download texi2html 1.82 directly from: http: / / download . savannah . gnu . org /

releases/texi2html/texi2html-1.82.tar.gz;

texi2html is only required if you intend to compile LilyPond’s own documentation (e.g. to
help with any document writing). The version available in the Fedora repositories is too
new and will not work. Extract the files into an appropriate location and then run the
commands;

./configure

make

sudo make install

This should install texi2html 1.82 into /usr/local/bin, which will normally take prior-
ity over /usr/bin where the later, pre-installed versions gets put. Now verify that your
operating system is able to see the correct version of texi2html.

texi2html --version

• Although not ‘required’ to compile LilyPond, if you intend to contribute to LilyPond (code-
base or help improve the documentation) then it is recommended that you also need to
install git.

sudo dnf install git

Also see Section “Starting with Git” in Contributor’s Guide.

• To use the lily-git.tcl GUI;

sudo dnf install tk

See Section “lily-git” in Contributor’s Guide.

http://download.savannah.gnu.org/releases/texi2html/texi2html-1.82.tar.gz
http://download.savannah.gnu.org/releases/texi2html/texi2html-1.82.tar.gz
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☛ ✟

Note: By default, when building LilyPond’s documentation, pdfTeX is
be used. However ligatures (fi, fl, ff etc.) may not be printed in the
PDF output. In this case XeTeX can be used instead. Download and
install the texlive-xetex package.

sudo dnf install texlive-xetex

The scripts used to build the LilyPond documentation will use XeTeX

instead of pdfTeX to generate the PDF documents if it is available. No
additional configuration is required.
✡ ✠

Linux Mint

The following instructions were tested on ‘Linux Mint 17.1’ and ‘LMDE - Betsy’ and will down-
load all the software required to both compile LilyPond and build the documentation..

• Enable the sources repository;

1. Using the Software Sources GUI (located under Administration).

2. Select Official Repositories.

3. Check the Enable source code repositories box under the Source Code section.

4. Click the Update the cache button and when it has completed, close the Software
Sources GUI.

• Download and install all the LilyPond build-dependencies (approximately 200MB);

sudo apt-get build-dep lilypond

• Download and install additional ‘build’ tools required for compiling;

sudo apt-get install autoconf fonts-texgyre texlive-lang-cyrillic

• Although not ‘required’ to compile LilyPond, if you intend to contribute to LilyPond (code-
base or help improve the documentation) then it is recommended that you also need to
install git.

sudo apt-get install git

Also see Section “Starting with Git” in Contributor’s Guide.

• To use the lily-git.tcl GUI;

sudo apt-get install tk

Also see Section “lily-git” in Contributor’s Guide.
☛ ✟

Note: By default, when building LilyPond’s documentation, pdfTeX is
be used. However ligatures (fi, fl, ff etc.) may not be printed in the
PDF output. In this case XeTeX can be used instead. Download and
install the texlive-xetex package.

sudo apt-get install texlive-xetex

The scripts used to build the LilyPond documentation will use XeTex

instead of pdfTex to generate the PDF documents if it is available. No
additional configuration is required.
✡ ✠

OpenSUSE

The following instructions were tested on ‘OpenSUSE 13.2’ and will download all the software
required to both compile LilyPond and build the documentation.

• Add the sources repository;

sudo zypper addrepo -f \

"http://download.opensuse.org/source/distribution/13.2/repo/oss/" sources
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• Download and install all the LilyPond build-dependencies (approximately 680MB);

sudo zypper source-install lilypond

• Download and install additional ‘build’ tools required for compiling;

sudo zypper install make

• Although not ‘required’ to compile LilyPond, if you intend to contribute to LilyPond (code-
base or help improve the documentation) then it is recommended that you also need to
install git.

sudo zypper install git

Also see Section “Starting with Git” in Contributor’s Guide.

• To use the lily-git.tcl GUI;

sudo zypper install tk

Also see Section “lily-git” in Contributor’s Guide.
☛ ✟

Note: By default, when building LilyPond’s documentation, pdfTeX is
be used. However ligatures (fi, fl, ff etc.) may not be printed in the
PDF output. In this case XeTeX can be used instead. Download and
install the texlive-xetex package.

sudo zypper install texlive-xetex

The scripts used to build the LilyPond documentation will use XeTex

instead of pdfTex to generate the PDF documents if it is available. No
additional configuration is required.
✡ ✠

Ubuntu

The following commands were tested on Ubuntu versions 14.04 LTS, 14.10 and 15.04 and will
download all the software required to both compile LilyPond and build the documentation.

• Download and install all the LilyPond build-dependencies (approximately 200MB);

sudo apt-get build-dep lilypond

• Download and install additional ‘build’ tools required for compiling;

sudo apt-get install autoconf fonts-texgyre texlive-lang-cyrillic

• Although not ‘required’ to compile LilyPond, if you intend to contribute to LilyPond (code-
base or help improve the documentation) then it is recommended that you also need to
install git.

sudo apt-get install git

Also see Section “Starting with Git” in Contributor’s Guide.

• To use the lily-git.tcl GUI;

sudo apt-get install tk

Also see Section “lily-git” in Contributor’s Guide.
☛ ✟

Note: By default, when building LilyPond’s documentation, pdfTeX is
be used. However ligatures (fi, fl, ff etc.) may not be printed in the
PDF output. In this case XeTeX can be used instead. Download and
install the texlive-xetex package.

sudo apt-get install texlive-xetex

The scripts used to build the LilyPond documentation will use XeTex

instead of pdfTex to generate the PDF documents if it is available. No
additional configuration is required.
✡ ✠
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Other

The following individual software packages are required just to compile LilyPond.

• GNU Autoconf (http://www.gnu.org/software/autoconf)

• GNU Bison (http://www.gnu.org/software/bison/)

Use version 2.0 or newer.

• GNU Compiler Collection (http://gcc.gnu.org/)

Use version 3.4 or newer (4.x recommended).

• Flex (http://flex.sourceforge.net/)

• FontForge (http://fontforge.sf.net/)

Use version 20060125 or newer (we recommend using at least 20100501); it must also be
compiled with the --enable-double switch, else this can lead to inaccurate intersection
calculations which end up with poorly-rendered glyphs in the output.

• GNU gettext (http://www.gnu.org/software/gettext/gettext.html)

Use version 0.17 or newer.

• GNU Make (http://www.gnu.org/software/make/)

Use version 3.78 or newer.

• MetaFont (http://metafont.tutorial.free.fr/)

The mf-nowin, mf, mfw or mfont binaries are usually packaged along with TEX (http://
www.latex-project.org/ftp.html).

• MetaPost (http://cm.bell-labs.com/who/hobby/MetaPost.html)

The mpost binary is also usually packaged with TEX (http://www.latex-project.org/
ftp.html).

• Perl (http://www.perl.org/)

• Texinfo (http://www.gnu.org/software/texinfo/)

Use version 6.1 or newer.

• Type 1 utilities (http://www.lcdf.org/~eddietwo/type/#t1utils)

Use version 1.33 or newer.

• Cyrillic fonts (https://www.ctan.org/pkg/cyrillic?lang=en)

Often packaged in repositories as texlive-lang-cyrillic.

• TeX Gyre ‘OTF’ font packages. As of LilyPond version 2.19.26, the previous default
serif, san serif and monospace fonts now use Tex Gyre’s Schola, Heros and Cursor fonts
respectively. Also See Section “Fonts” in Notation Reference.

Some distributions do not always provide ‘OTF’ font files in the Tex Gyre packages from
their repositories. Use the command fc-list | grep texgyre to list the fonts available to
your system and check that the appropriate *.otf files are reported. If they are not then
download and manually extract the ‘OTF’ files to either your local ~/.fonts/ directory or
use the configure command and the --with-texgyre-dir=/path_to_otf_files/ option.

The following font families are required:

Schola (http://www.gust.org.pl/projects/e-foundry/tex-gyre/schola), Heros
(http://www.gust.org.pl/projects/e-foundry/tex-gyre/heros) and Cursor (http://
www.gust.org.pl/projects/e-foundry/tex-gyre/cursor).

4.2.3 Requirements for building documentation

The entire set of documentation for the most current build of LilyPond is available online at
http://lilypond.org/doc/v2.19/Documentation/web/development, but you can also build
them locally from the source code. This process requires some additional tools and packages.

http://www.gnu.org/software/autoconf
http://www.gnu.org/software/bison/
http://gcc.gnu.org/
http://flex.sourceforge.net/
http://fontforge.sf.net/
http://www.gnu.org/software/gettext/gettext.html
http://www.gnu.org/software/make/
http://metafont.tutorial.free.fr/
http://www.latex-project.org/ftp.html
http://www.latex-project.org/ftp.html
http://cm.bell-labs.com/who/hobby/MetaPost.html
http://www.latex-project.org/ftp.html
http://www.latex-project.org/ftp.html
http://www.perl.org/
http://www.gnu.org/software/texinfo/
http://www.lcdf.org/~eddietwo/type/#t1utils
https://www.ctan.org/pkg/cyrillic?lang=en
http://www.gust.org.pl/projects/e-foundry/tex-gyre/schola
http://www.gust.org.pl/projects/e-foundry/tex-gyre/heros
http://www.gust.org.pl/projects/e-foundry/tex-gyre/heros
http://www.gust.org.pl/projects/e-foundry/tex-gyre/cursor
http://www.gust.org.pl/projects/e-foundry/tex-gyre/cursor
http://lilypond.org/doc/v2.19/Documentation/web/development
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☛ ✟

Note: If the instructions for one of the previously listed Linux in the pre-
vious section (Section “Requirements for compiling LilyPond” in Con-

tributor’s Guide) have been used, then the following can be ignored as
the software should already be installed.
✡ ✠

• Everything listed in Section 4.2.2 [Requirements for compiling LilyPond], page 45,

• ImageMagick (http://www.imagemagick.org/)

• Netpbm (http://netpbm.sourceforge.net/)

• gzip (http://gzip.org/)

• rsync (http://rsync.samba.org/)

• Texi2HTML (http://www.nongnu.org/texi2html/)

Use version 1.82. Later versions will not work.

Download texi2html 1.82 directly from: http: / / download . savannah . gnu . org /

releases/texi2html/texi2html-1.82.tar.gz;

Extract the files into an appropriate location and then run the commands;

./configure

make

sudo make install

Now verify that your operating system is able to see the correct version of texi2html.

texi2html --version

• Fonts required to build the documentation in addition to those required to run LilyPond:

gsfonts

fonts-linuxlibertine

fonts-liberation

fonts-dejavu

fonts-freefont-otf

ttf-bitstream-vera

texlive-fonts-recommended

ttf-xfree86-nonfree
☛ ✟

Note: By default, when building LilyPond’s documentation, pdfTeX is
be used. However ligatures (fi, fl, ff etc.) may not be printed in the PDF
output. In this case XeTeX can be used instead. Download and install
the texlive-xetex package. The scripts used to build the LilyPond
documentation will use XeTex instead of pdfTex to generate the PDF
documents if it is available. No additional configuration is required.
✡ ✠

4.3 Getting the source code

Downloading the Git repository

In general, developers compile LilyPond from within a local Git repository. Setting up a local
Git repository is explained in Section “Starting with Git” in Contributor’s Guide.

Downloading a source tarball

Packagers are encouraged to use source tarballs for compiling.

The tarball for the latest stable release is available on the Section “Source” in General

Information page.

The latest source code snapshot (http://git.savannah.gnu.org/gitweb/ ?p=lilypond.
git;a=snapshot) is also available as a tarball from the GNU Savannah Git server.

http://www.imagemagick.org/
http://netpbm.sourceforge.net/
http://gzip.org/
http://rsync.samba.org/
http://www.nongnu.org/texi2html/
http://download.savannah.gnu.org/releases/texi2html/texi2html-1.82.tar.gz
http://download.savannah.gnu.org/releases/texi2html/texi2html-1.82.tar.gz
http://git.savannah.gnu.org/gitweb/?p=lilypond.git;a=snapshot
http://git.savannah.gnu.org/gitweb/?p=lilypond.git;a=snapshot
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All tagged releases (including legacy stable versions and the most recent development release)
are available here:

http://lilypond.org/download/source/

Download the tarball to your ~/src/ directory, or some other appropriate place.
☛ ✟

Note: Be careful where you unpack the tarball! Any subdirectories of
the current folder named lilypond/ or lilypond-x.y.z/ (where x.y.z

is the release number) will be overwritten if there is a name clash with
the tarball.
✡ ✠

Unpack the tarball with this command:

tar -xzf lilypond-x.y.z.tar.gz

This creates a subdirectory within the current directory called lilypond-x.y.z/. Once
unpacked, the source files occupy about 40 MB of disk space.

Windows users wanting to look at the source code may have to download and install the
free-software 7zip archiver (http://www.7-zip.org) to extract the tarball.

4.4 Configuring make

4.4.1 Running ./autogen.sh

After you unpack the tarball (or download the Git repository), the contents of your top source
directory should be similar to the current source tree listed at http://git.sv.gnu.org/

gitweb/?p=lilypond.git;a=tree.

Next, you need to create the generated files; enter the following command from your top
source directory:

./autogen.sh --noconfigure

This will generate a number of files and directories to aid configuration, such as configure,
README.txt, etc.

Next, create the build directory with:

mkdir build/

cd build/

We heavily recommend building lilypond inside a separate directory with this method.

4.4.2 Running ../configure

Configuration options
☛ ✟

Note: make sure that you are in the build/ subdirectory of your source
tree.
✡ ✠

The ../configure command (generated by ./autogen.sh) provides many options for con-
figuring make. To see them all, run:

../configure --help

Checking build dependencies
☛ ✟

Note: make sure that you are in the build/ subdirectory of your source
tree.
✡ ✠

http://lilypond.org/download/source/
http://www.7-zip.org
http://git.sv.gnu.org/gitweb/?p=lilypond.git;a=tree
http://git.sv.gnu.org/gitweb/?p=lilypond.git;a=tree
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When ../configure is run without any arguments, it will check to make sure your system
has everything required for compilation:

../configure

If any build dependency is missing, ../configure will return with:

ERROR: Please install required programs: foo

The following message is issued if you are missing programs that are only needed for building
the documentation:

WARNING: Please consider installing optional programs: bar

If you intend to build the documentation locally, you will need to install or update these
programs accordingly.

☛ ✟

Note: ../configure may fail to issue warnings for certain documenta-
tion build requirements that are not met. If you experience problems
when building the documentation, you may need to do a manual check
of Section 4.2.3 [Requirements for building documentation], page 48.
✡ ✠

Configuring target directories
☛ ✟

Note: make sure that you are in the build/ subdirectory of your source
tree.
✡ ✠

If you intend to use your local build to install a local copy of the program, you will probably
want to configure the installation directory. Here are the relevant lines taken from the output
of ../configure --help:

By default, ‘make install’ will install all the files in /usr/local/bin,
/usr/local/lib etc. You can specify an installation prefix other than /usr/local

using ‘--prefix’, for instance ‘--prefix=$HOME’.

A typical installation prefix is $HOME/usr:

../configure --prefix=$HOME/usr

Note that if you plan to install a local build on a system where you do not have root priv-
ileges, you will need to do something like this anyway—make install will only succeed if the
installation prefix points to a directory where you have write permission (such as your home
directory). The installation directory will be automatically created if necessary.

The location of the lilypond command installed by this process will be
prefix/bin/lilypond; you may want to add prefix/bin/ to your $PATH if it is not
already included.

It is also possible to specify separate installation directories for different types of program
files. See the full output of ../configure --help for more information.

If you encounter any problems, please see Section 4.7 [Problems], page 56.

4.5 Compiling LilyPond

4.5.1 Using make
☛ ✟

Note: make sure that you are in the build/ subdirectory of your source
tree.
✡ ✠
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LilyPond is compiled with the make command. Assuming make is configured properly, you
can simply run:

make

‘make’ is short for ‘make all’. To view a list of make targets, run:

make help

TODO: Describe what make actually does.

See also

Section 4.6.2 [Generating documentation], page 53, provides more info on the make targets
used to build the LilyPond documentation.

4.5.2 Saving time with the -j option

If your system has multiple CPUs, you can speed up compilation by adding ‘-jX’ to the make

command, where ‘X’ is one more than the number of cores you have. For example, a typical
Core2Duo machine would use:

make -j3

If you get errors using the -j option, and ‘make’ succeeds without it, try lowering the X value.

Because multiple jobs run in parallel when -j is used, it can be difficult to determine the
source of an error when one occurs. In that case, running ‘make’ without the -j is advised.

4.5.3 Compiling for multiple platforms

If you want to build multiple versions of LilyPond with different configuration settings, you
can use the --enable-config=conf option of configure. You should use make conf=conf to
generate the output in out-conf. For example, suppose you want to build with and without
profiling, then use the following for the normal build

./configure --prefix=$HOME/usr/ --enable-checking

make

and for the profiling version, specify a different configuration

./configure --prefix=$HOME/usr/ --enable-profiling \

--enable-config=prof --disable-checking

make conf=prof

If you wish to install a copy of the build with profiling, don’t forget to use conf=CONF when
issuing make install:

make conf=prof install

See also

Section 4.6.1 [Installing LilyPond from a local build], page 52,

4.5.4 Useful make variables

If a less verbose build output if desired, the variable QUIET_BUILD may be set to 1 on make

command line, or in local.make at top of the build tree.

4.6 Post-compilation options

4.6.1 Installing LilyPond from a local build

If you configured make to install your local build in a directory where you normally have write
permission (such as your home directory), and you have compiled LilyPond by running make,
you can install the program in your target directory by running:

make install
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If instead, your installation directory is not one that you can normally write to (such as
the default /usr/local/, which typically is only writeable by the superuser), you will need to
temporarily become the superuser when running make install:

sudo make install

or. . .

su -c 'make install'

If you don’t have superuser privileges, then you need to configure the installation directory
to one that you can write to, and then re-install. See [Configuring target directories], page 51.

4.6.2 Generating documentation

Documentation editor’s edit/compile cycle

• Initial documentation build:

make [-jX]

make [-jX CPU_COUNT=X] doc ## can take an hour or more

make [-jX CPU_COUNT=X] doc-stage-1 ## to build only PDF documentation

• Edit/compile cycle:

## edit source files, then...

make [-jX] ## needed if editing outside

## Documentation/, but useful anyway

## for finding Texinfo errors.

make [-jX CPU_COUNT=X] doc ## usually faster than initial build.

• Reset:

It is generally possible to remove the compiled documentation from your system with
‘make doc-clean’, but this method is not 100% guaranteed. Instead, if you want to be
sure you have a clean system, we recommend that you delete your build/ directory, and
begin compiling from scratch. Since the documentation compile takes much longer than the
non-documentation compile, this does not increase the overall time by a great deal.

Building documentation

After a successful compile (using make), the documentation can be built by issuing:

make doc

or, to build only the PDF documentation and not the HTML,

make doc-stage-1
☛ ✟

Note: The first time you run make doc, the process can easily take an
hour or more with not much output on the command line.
✡ ✠

After this initial build, make doc only makes changes to the documentation where needed,
so it may only take a minute or two to test changes if the documentation is already built.

If make doc succeeds, the HTML documentation tree is available in
out-www/offline-root/, and can be browsed locally. Various portions of the docu-
mentation can be found by looking in out/ and out-www subdirectories in other places in
the source tree, but these are only portions of the docs. Please do not complain about
anything which is broken in those places; the only complete set of documentation is in
out-www/offline-root/ from the top of the source tree.

make doc sends the output from most of the compilation to logfiles. If the build fails for any
reason, it should prompt you with the name of a logfile which will provide information to help
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you work out why the build failed. These logfiles are not deleted with make doc-clean. To
remove all the logfiles generated by the compilation process, use:

make log-clean

make doc compiles the documents for all languages. To save some compile time, the English
language documents can be compiled on their own with:

make LANGS='' doc

Similarly, it is possible to compile a subset of the translated documentation by specifying their
language codes on the command line. For example, the French and German translations are
compiled with:

make LANGS='de fr' doc

Note that this will also compile the English version.

Compilation of documentation in Info format with images can be done separately by issuing:

make info

An issue when switching branches between master and translation is the appear-
ance/disappearance of translated versions of some manuals. If you see such a warning from
make:

No rule to make target `X', needed by `Y'

Your best bet is to delete the file Y.dep and to try again.

Building a single document

It’s possible to build a single document. For example, to rebuild only contributor.pdf, do the
following:

cd build/

cd Documentation/

touch ../../Documentation/contributor.texi

make out=www out-www/contributor.pdf

If you are only working on a single document, test-building it in this way can give substantial
time savings - recreating contributor.pdf, for example, takes a matter of seconds.

Saving time with CPU_COUNT

The most time consuming task for building the documentation is running LilyPond to build
images of music, and there cannot be several simultaneously running lilypond-book instances,
so the -j make option does not significantly speed up the build process. To help speed it up, the
makefile variable CPU_COUNT may be set in local.make or on the command line to the number
of .ly files that LilyPond should process simultaneously, e.g. on a bi-processor or dual core
machine:

make -j3 CPU_COUNT=3 doc

The recommended value of CPU_COUNT is one plus the number of cores or processors, but it is
advisable to set it to a smaller value unless your system has enough RAM to run that many
simultaneous LilyPond instances. Also, values for the -j option that pose problems with ‘make’
are less likely to pose problems with ‘make doc’ (this applies to both -j and CPU_COUNT). For
example, with a quad-core processor, it is possible for ‘make -j5 CPU_COUNT=5 doc’ to work
consistently even if ‘make -j5’ rarely succeeds.

AJAX search

To build the documentation with interactive searching, use:

make doc AJAX_SEARCH=1
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This requires PHP, and you must view the docs via a http connection (you cannot view them
on your local filesystem).

☛ ✟

Note: Due to potential security or load issues, this option is not enabled
in the official documentation builds. Enable at your own risk.
✡ ✠

Installing documentation

The HTML, PDF and if available Info files can be installed into the standard documentation
path by issuing

make install-doc

This also installs Info documentation with images if the installation prefix is properly set; other-
wise, instructions to complete proper installation of Info documentation are printed on standard
output.

To install the Info documentation separately, run:

make install-info

Note that to get the images in Info documentation, install-doc target creates symbolic links
to HTML and PDF installed documentation tree in prefix/share/info, in order to save disk
space, whereas install-info copies images in prefix/share/info subdirectories.

It is possible to build a documentation tree in out-www/online-root/, with special process-
ing, so it can be used on a website with content negotiation for automatic language selection;
this can be achieved by issuing

make WEB_TARGETS=online doc

and both ‘offline’ and ‘online’ targets can be generated by issuing

make WEB_TARGETS="offline online" doc

Several targets are available to clean the documentation build and help with maintaining
documentation; an overview of these targets is available with

make help

from every directory in the build tree. Most targets for documentation maintenance are available
from Documentation/; for more information, see Section “Documentation work” in Contribu-

tor’s Guide.

The makefile variable QUIET_BUILD may be set to 1 for a less verbose build output, just like
for building the programs.

Building documentation without compiling

The documentation can be built locally without compiling LilyPond binary, if LilyPond is already
installed on your system.

From a fresh Git checkout, do

./autogen.sh # ignore any warning messages

cp GNUmakefile.in GNUmakefile

make -C scripts && make -C python

nice make LILYPOND_EXTERNAL_BINARY=/path/to/bin/lilypond doc

Please note that this may break sometimes – for example, if a new feature is added with a
test file in input/regression, even the latest development release of LilyPond will fail to build
the docs.

You may build the manual without building all the input/* stuff (i.e. mostly regression
tests): change directory, for example to Documentation/, issue make doc, which will build
documentation in a subdirectory out-www from the source files in current directory. In this case,
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if you also want to browse the documentation in its post-processed form, change back to top
directory and issue

make out=www WWW-post

Known issues and warnings

You may also need to create a script for pngtopnm and pnmtopng. On GNU/Linux, I use this:

export LD_LIBRARY_PATH=/usr/lib

exec /usr/bin/pngtopnm "$@"

On MacOS X with fink, I use this:

export DYLD_LIBRARY_PATH=/sw/lib

exec /sw/bin/pngtopnm "$@"

On MacOS X with macports, you should use this:

export DYLD_FALLBACK_LIBRARY_PATH=/opt/local/lib

exec /opt/local/bin/pngtopnm "$@"

4.6.3 Testing LilyPond binary

LilyPond comes with an extensive suite that exercises the entire program. This suite can be
used to test that the binary has been built correctly.

The test suite can be executed with:

make test

If the test suite completes successfully, the LilyPond binary has been verified.

More information on the regression test suite is found at Section “Regression tests” in Con-

tributor’s Guide.

4.7 Problems

For help and questions use lilypond-user@gnu.org. Send bug reports to
bug-lilypond@gnu.org.

Bugs that are not fault of LilyPond are documented here.

Compiling on MacOS X

Here are special instructions for compiling under MacOS X. These instructions assume that
dependencies are installed using MacPorts. (http://www.macports.org/) The instructions
have been tested using OS X 10.5 (Leopard).

First, install the relevant dependencies using MacPorts.

Next, add the following to your relevant shell initialization files. This is ~/.profile by
default. You should create this file if it does not exist.

export PATH=/opt/local/bin:/opt/local/sbin:$PATH

export DYLD_FALLBACK_LIBRARY_PATH=/opt/local/lib:$DYLD_FALLBACK_LIBRARY_PATH

Now you must edit the generated config.make file. Change

FLEXLEXER_FILE = /usr/include/FlexLexer.h

to:

FLEXLEXER_FILE = /opt/local/include/FlexLexer.h

At this point, you should verify that you have the appropriate fonts installed with your
ghostscript installation. Check ls /opt/local/share/ghostscript/fonts for: ’c0590*’ files
(.pfb, .pfb and .afm). If you don’t have them, run the following commands to grab them from
the ghostscript SVN server and install them in the appropriate location:

svn export http://svn.ghostscript.com/ghostscript/tags/urw-fonts-1.0.7pre44/

mailto:lilypond-user@gnu.org
mailto:bug-lilypond@gnu.org
http://www.macports.org/
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sudo mv urw-fonts-1.0.7pre44/* /opt/local/share/ghostscript/fonts/

rm -rf urw-fonts-1.07pre44

Now run the ./configure script. To avoid complications with automatic font detection, add

--with-fonts-dir=/opt/local/share/ghostscript/fonts

Solaris

Solaris7, ./configure

./configure needs a POSIX compliant shell. On Solaris7, /bin/sh is not yet POSIX com-
pliant, but /bin/ksh or bash is. Run configure like

CONFIG_SHELL=/bin/ksh ksh -c ./configure

or

CONFIG_SHELL=/bin/bash bash -c ./configure

FreeBSD

To use system fonts, dejaview must be installed. With the default port, the fonts are installed
in usr/X11R6/lib/X11/fonts/dejavu.

Open the file $LILYPONDBASE/usr/etc/fonts/local.conf and add the following line just
after the <fontconfig> line. (Adjust as necessary for your hierarchy.)

<dir>/usr/X11R6/lib/X11/fonts</dir>

International fonts

On Mac OS X, all fonts are installed by default. However, finding all system fonts requires a
bit of configuration; see this post (http://lists.gnu.org/archive/html/lilypond-user/
2007-03/msg00472.html) on the lilypond-user mailing list.

On Linux, international fonts are installed by different means on every distribution. We
cannot list the exact commands or packages that are necessary, as each distribution is different,
and the exact package names within each distribution changes. Here are some hints, though:

Red Hat Fedora

taipeifonts fonts-xorg-truetype ttfonts-ja fonts-arabic \

ttfonts-zh_CN fonts-ja fonts-hebrew

Debian GNU/Linux

apt-get install emacs-intl-fonts xfonts-intl-.* \

fonts-ipafont-gothic fonts-ipafont-mincho \

xfonts-bolkhov-75dpi xfonts-cronyx-100dpi xfonts-cronyx-75dpi

Using lilypond python libraries

If you want to use lilypond’s python libraries (either running certain build scripts manually,
or using them in other programs), set PYTHONPATH to python/out in your build directory, or
.../usr/lib/lilypond/current/python in the installation directory structure.

4.8 Concurrent stable and development versions

It can be useful to have both the stable and the development versions of LilyPond available at
once. One way to do this on GNU/Linux is to install the stable version using the precompiled
binary, and run the development version from the source tree. After running make all from

http://lists.gnu.org/archive/html/lilypond-user/2007-03/msg00472.html
http://lists.gnu.org/archive/html/lilypond-user/2007-03/msg00472.html
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the top directory of the LilyPond source files, there will be a binary called lilypond in the out

directory:

<path to>/lilypond/out/bin/lilypond

This binary can be run without actually doing the make install command. The advantage
to this is that you can have all of the latest changes available after pulling from git and running
make all, without having to uninstall the old version and reinstall the new.

So, to use the stable version, install it as usual and use the normal commands:

lilypond foobar.ly

To use the development version, create a link to the binary in the source tree by saving the
following line in a file somewhere in your $PATH:

exec <path to>/lilypond/out/bin/lilypond "$@"

Save it as Lilypond (with a capital L to distinguish it from the stable lilypond), and make
it executable:

chmod +x Lilypond

Then you can invoke the development version this way:

Lilypond foobar.ly

TODO: ADD

- other compilation tricks for developers

4.9 Build system

We currently use make and stepmake, which is complicated and only used by us. Hopefully this
will change in the future.

Version-specific texinfo macros

• made with scripts/build/create-version-itexi.py and
scripts/build/create-weblinks-itexi.py

• used extensively in the WEBSITE_ONLY_BUILD version of the website (made with
website.make, used on lilypond.org)

• not (?) used in the main docs?

• the numbers in VERSION file: MINOR VERSION should be 1 more than the last release,
VERSION DEVEL should be the last online release. Yes, VERSION DEVEL is less than
VERSION.
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5 Documentation work

There are currently 11 manuals for LilyPond, not including the translations. Each book is
available in HTML, PDF, and info. The documentation is written in a language called texinfo

– this allows us to generate different output formats from a single set of source files.

To organize multiple authors working on the documentation, we use a Version Control System
(VCS) called Git, previously discussed in Section 3.2 [Starting with Git], page 14.

5.1 Introduction to documentation work

Our documentation tries to adhere to our Section 5.5 [Documentation policy], page 69. This
policy contains a few items which may seem odd. One policy in particular is often questioned by
potential contributors: we do not repeat material in the Notation Reference, and instead provide
links to the “definitive” presentation of that information. Some people point out, with good
reason, that this makes the documentation harder to read. If we repeated certain information
in relevant places, readers would be less likely to miss that information.

That reasoning is sound, but we have two counter-arguments. First, the Notation Reference
– one of five manuals for users to read – is already over 500 pages long. If we repeated material,
we could easily exceed 1000 pages! Second, and much more importantly, LilyPond is an evolving
project. New features are added, bugs are fixed, and bugs are discovered and documented. If
features are discussed in multiple places, the documentation team must find every instance.
Since the manual is so large, it is impossible for one person to have the location of every piece
of information memorized, so any attempt to update the documentation will invariably omit a
few places. This second concern is not at all theoretical; the documentation used to be plagued
with inconsistent information.

If the documentation were targeted for a specific version – say, LilyPond 2.10.5 – and we
had unlimited resources to spend on documentation, then we could avoid this second problem.
But since LilyPond evolves (and that is a very good thing!), and since we have quite limited
resources, this policy remains in place.

A few other policies (such as not permitting the use of tweaks in the main portion of NR 1+2)
may also seem counter-intuitive, but they also stem from attempting to find the most effective
use of limited documentation help.

Before undertaking any large documentation work, contributors are encouraged to contact
the Section 14.3 [Meisters], page 170.

5.2 \version in documentation files

Every documentation file which includes LilyPond code must begin with a \version statement,
since the build procedure explicitly tests for its presence and will not continue otherwise. The
\version statement should reference a version of LilyPond consistent with the syntax of the
contained code.

Since the \version statement is not valid Texinfo input it must be commented out like this:

@c \version "2.19.1"

So, if you are adding LilyPond code which is not consistent with the current version header,
you should

1. run convert-ly on the file using the latest version of LilyPond (which should, if everybody
has done proper maintenance, not change anything);

2. add the new code;

3. modify the version number to match the new code.
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5.3 Documentation suggestions

Small additions

For additions to the documentation,

1. Tell us where the addition should be placed. Please include both the section number and
title (i.e. "LM 2.13 Printing lyrics").

2. Please write exact changes to the text.

3. A formal patch to the source code is not required; we can take care of the technical details.

4. Send the suggestions to the bug-lilypond mailing list as discussed in Section “Contact” in
General Information.

5. Here is an example of a perfect documentation report:

To: bug-lilypond@gnu.org

From: helpful-user@example.net

Subject: doc addition

In LM 2.13 (printing lyrics), above the last line ("More options,

like..."), please add:

----

To add lyrics to a divided part, use blah blah blah. For example,

\score {

\notes {blah <<blah>> }

\lyrics {blah <<blah>> }

blah blah blah

}

----

In addition, the second sentence of the first paragraph is

confusing. Please delete that sentence (it begins "Users

often...") and replace it with this:

----

To align lyrics with something, do this thing.

----

Have a nice day,

Helpful User

Larger contributions

To replace large sections of the documentation, the guidelines are stricter. We cannot remove
parts of the current documentation unless we are certain that the new version is an improvement.

1. Ask on the lilypond-devel mailing list if such a rewrite is necessary; somebody else might
already be working on this issue!

2. Split your work into small sections; this makes it much easier to compare the new and old
documentation.

3. Please prepare a formal git patch.
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Contributions that contain examples using overrides

Examples that use overrides, tweaks, customer Scheme functions etc. are (with very few excep-
tions) not included in the main text of the manuals; as there would be far too many, equally
useful, candidates.

The correct way is to submit your example, with appropriate explanatory text and tags, to
the LilyPond Snippet Repository (LSR). Snippets that have the “docs” tag can then be easily
added as a selected snippet in the documentation. It will also appear automatically in the
Snippets lists. See Section 7.1 [Introduction to LSR], page 91.

Snippets that don’t have the “docs” tag will still be searchable and viewable within the LSR,
but will be not be included in the Snippets list or be able to be included as part of the main
documentation.

Generally, any new snippets that have the “docs” tag are more carefully checked for syntax
and formatting.

Announcing your snippet

Once you have followed these guidelines, please send a message to lilypond-devel with your
documentation submissions. Unfortunately there is a strict ‘no top-posting’ check on the mailing
list; to avoid this, add:

> I'm not top posting

(you must include the > ) to the top of your documentation addition.

We may edit your suggestion for spelling, grammar, or style, and we may not place the
material exactly where you suggested, but if you give us some material to work with, we can
improve the manual much faster.

Thanks for your interest!

5.4 Texinfo introduction and usage policy

5.4.1 Texinfo introduction

The language is called Texinfo; you can see its manual here:

http://www.gnu.org/software/texinfo/manual/texinfo/

However, you don’t need to read those docs. The most important thing to notice is that
text is text. If you see a mistake in the text, you can fix it. If you want to change the order of
something, you can cut-and-paste that stuff into a new location.

☛ ✟

Note: Rule of thumb: follow the examples in the existing docs. You
can learn most of what you need to know from this; if you want to do
anything fancy, discuss it on lilypond-devel first.
✡ ✠

5.4.2 Documentation files

All manuals live in Documentation/.

In particular, there are four user manuals, their respective master source files are
learning.tely (LM, Learning Manual), notation.tely (NR, Notation Reference),
music-glossary.tely (MG, Music Glossary), and lilypond-program (AU). Each chapter is
written in a separate file, ending in .itely for files containing lilypond code, and .itexi for
files without lilypond code, located in a subdirectory associated to the manual (learning/ for
learning.tely, and so on); list the subdirectory of each manual to determine the filename of
the specific chapter you wish to modify.

http://www.gnu.org/software/texinfo/manual/texinfo/
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Developer manuals live in Documentation/ too. Currently there is only one: the Contribu-
tor’s Guide contrib-guide.texi you are reading.

Snippet files are part of documentation, and the Snippet List (SL) lives in Documentation/

just like the manuals. For information about how to modify the snippet files and SL, see
Chapter 7 [LSR work], page 91.

5.4.3 Sectioning commands

The Notation Reference uses section headings at four, occasionally five, levels.

• Level 1: @chapter

• Level 2: @section

• Level 3: @subsection

• Level 4: @unnumberedsubsubsec

• Level 5: @subsubsubheading

The first three levels are numbered in HTML, the last two are not. Numbered sections
correspond to a single HTML page in the split HTML documents.

The first four levels always have accompanying nodes so they can be referenced and are also
included in the ToC in HTML.

Most of the manual is written at level 4 under headings created with

@node Foo

@unnumberedsubsubsec Foo

Level 3 subsections are created with

@node Foo

@subsection Foo

Level 4 headings and menus must be preceded by level 3 headings and menus, and so on for
level 3 and level 2. If this is not what is wanted, please use:

@subsubsubheading Foo

Please leave two blank lines above a @node; this makes it easier to find sections in texinfo.

Do not use any @ commands for a @node. They may be used for any @sub... sections or
headings however.

not:

@node @code{Foo} Bar

@subsection @code{Foo} Bar

but instead:

@node Foo Bar

@subsection @code{Foo} Bar

No punctuation may be used in the node names. If the heading text uses punctuation (in
particular, colons and commas) simply leave this out of the node name and menu.

@menu

* Foo Bar::

@end menu

@node Foo Bar

@subsection Foo: Bar

Backslashes must not be used in node names or section headings. If the heading text should
include a backslash simply leave this out of the node name and menu and replace it with @bs{}

in the heading text.

@menu
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* The set command

@end menu

@node The set command

@subsection The @code{@bs{}set} command

References to such a node may use the third argument of the @ref command to display the
texually correct heading.

@ref{The set command,,The @code{@bs{}set command}

With the exception of @ commands, \ commands and punctuation, the section name should
match the node name exactly.

Sectioning commands (@node and @section) must not appear inside an @ignore. Separate
those commands with a space, ie @n ode.

Nodes must be included inside a

@menu

* foo::

* bar::

@end menu

construct. These can be constructed with scripts: see [Stripping whitespace and generating
menus], page 74.

5.4.4 LilyPond formatting

• Most LilyPond examples throughout the documentation can be produced with:

@lilypond[verbatim,quote]

If using \book{} in your example then you must also include the papersize=X variable,
where X is a defined paper size from within scm/paper.scm. This is to avoid the default
a4 paper size being used and leaving too much unnecessary whitespace and potentially
awkward page breaks in the PDFs.

The preferred papersizes are a5, a6 or a8landscape.

a8landscape works best for a single measure with a single title and/or single tagline:

@lilypond[papersize=a8landscape,verbatim]

\book {

\header {

title = "A scale in LilyPond"

}

\relative {

c d e f

}

}

@end lilypond

and can also be used to easily show features that require page breaks (i.e. page numbers)
without taking large amounts of space within the documentation. Do not use the quote

option with this paper size.

a5 or a6 paper sizes are best used for examples that have more than two measures of music
or require multiple staves (i.e. to illustrate cross-staff features, RH and LH parts etc.) and
where \book{} constructions are required or where a8landscape produces an example that
is too cramped. Depending on the example the quote option may need to be omitted.

In rare cases, other options may be used (or omitted), but ask first.
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• Please avoid using extra spacing either after or within the @lilypond parameters.

not: @lilypond [verbatim, quote, fragment]

but instead: @lilypond[verbatim,quote,fragment]

• Inspirational headwords are produced with:

@lilypondfile[quote,ragged-right,line-width=16\cm,staffsize=16]

{pitches-headword.ly}

• LSR snippets are linked with:

@lilypondfile[verbatim,quote,ragged-right,texidoc,doctitle]

{filename.ly}

• Use two spaces for indentation in lilypond examples (no tabs).

• All engravers should have double-quotes around them:

\consists "Spans_arpeggio_engraver"

LilyPond does not strictly require this, but it is a useful convention to follow.

• All context or layout object strings should be prefaced with #. Again, LilyPond does not
strictly require this, but it is helpful to get users accustomed to this scheme construct, i.e.
\set Staff.instrumentName = #"cello"

• Try to avoid using #' or #` when describing context or layout properties outside of an
@example or @lilypond, unless the description explicitly requires it.

i.e. “...setting the transparent property leaves the object where it is, but makes it invisi-
ble.”

• If possible, only write one bar per line.

• If you only have one bar per line, omit bar checks. If you must put more than one bar per
line (not recommended), then include bar checks.

• Tweaks should, if possible, also occur on their own line.

not: \override TextScript.padding = #3 c1^"hi"

but instead: \override TextScript.padding = #3

c1^"hi"

excepted in Templates, where ‘doctitle’ may be omitted.

• Avoid long stretches of input code. Nobody is going to read them in print. Create small
examples. However, this does not mean it has be minimal.

• Specify durations for at least the first note of every bar.

• If possible, end with a complete bar.

• Comments should go on their own line, and be placed before the line(s) to which they refer.

• For clarity, always use { } marks even if they are not technically required; i.e.

not:

\context Voice \repeat unfold 2 \relative c' {

c2 d

}

but instead:

\context Voice {

\repeat unfold 2 {

\relative c' {

c2 d

}
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}

}

• Add a space around { } marks; i.e.

not: \chordmode{c e g}

but instead: \chordmode { c e g }

• Use { } marks for additional \markup format commands; i.e.

not: c^\markup \tiny\sharp

but instead: c^\markup { \tiny \sharp }

• Remove any space around < > marks; i.e.

not: < c e g > 4

but instead: <c e g>4

• Beam, slur and tie marks should begin immediately after the first note with beam and
phrase marks ending immediately after the last.

a8\( ais16[ b cis( d] b) cis4~ b' cis,\)

• If you want to work on an example outside of the manual (for easier/faster processing), use
this header:

\paper {

indent = 0\mm

line-width = 160\mm - 2.0 * 0.4\in

line-width = #(- line-width (* mm 3.000000))

}

\layout {

}

You may not change any of these values. If you are making an example demonstrating
special \paper{} values, contact the Documentation Editor.

5.4.5 Text formatting

• Lines should be less than 72 characters long. (We personally recommend writing with 66-
char lines, but do not bother modifying existing material). Also see the recommendations
for fixed-width fonts in the Section 5.4.6 [Syntax survey], page 65.

• Do not use tabs.

• Do not use spaces at the beginning of a line (except in @example or @verbatim environ-
ments), and do not use more than a single space between words. ‘makeinfo’ copies the input
lines verbatim without removing those spaces.

• Use two spaces after a period.

• In examples of syntax, use @var{musicexpr} for a music expression.

• Don’t use @rinternals{} in the main text. If you’re tempted to do so, you’re probably
getting too close to “talking through the code”. If you really want to refer to a context, use
@code{} in the main text and @rinternals{} in the @seealso.

5.4.6 Syntax survey

Comments

• @c ... — single line comment. ‘@c NOTE:’ is a comment which should remain in the final
version. (gp only command ;)

• @ignore — multi-line comment:

@ignore
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...

@end ignore

Cross references

Enter the exact @node name of the target reference between the brackets
(eg. ‘@ref{Syntax survey}’). Do not split a cross-reference across two lines – this
causes the cross-reference to be rendered incorrectly in HTML documents.

• @ref{...} — link within current manual.

• @rchanges{...} — link to Changes.

• @rcontrib{...} — link to Contributor’s Guide.

• @ressay{...} — link to Engraving Essay.

• @rextend{...} — link to Extending LilyPond.

• @rglos{...} — link to the Music Glossary.

• @rinternals{...} — link to the Internals Reference.

• @rlearning{...} — link to Learning Manual.

• @rlsr{...} — link to a Snippet section.

• @rprogram{...} — link to Application Usage.

• @ruser{...} — link to Notation Reference.

• @rweb{...} — link to General Information.

External links

• @email{...} — create a mailto: E-mail link.

• @uref{URL[, link text]} — link to an external url. Use within an @example ... @end

example.

@example

@uref{URL [, link text ]}

@end example

Fixed-width font

• @code{...}, @samp{...} —

Use the @code{...} command when referring to individual language-specific tokens (key-
words, commands, engravers, scheme symbols, etc.) in the text. Ideally, a single
@code{...} block should fit within one line in the PDF output.

Use the @samp{...} command when you have a short example of user input, unless it
constitutes an entire @item by itself, in which case @code{...} is preferable. Otherwise,
both should only be used when part of a larger sentence within a paragraph or @item. Do
not use @code{...} or @samp{...} inside an @example block, and do not use either as a
free-standing paragraph; use @example instead.

A single unindented line in the PDF has space for about 79 fixed-width characters (76
if indented). Within an @item there is space for about 75 fixed-width characters. Each
additional level of @itemize or @enumerate shortens the line by about 4 columns.

However, even short blocks of @code{...} and @samp{...} can run into the margin if the
Texinfo line-breaking algorithm gets confused. Additionally, blocks that are longer than
this may in fact print nicely; it all depends where the line breaks end up. If you compile
the docs yourself, check the PDF output to make sure the line breaks are satisfactory.

The Texinfo setting @allowcodebreaks is set to false in the manuals, so lines within
@code{...} or @samp{...} blocks will only break at spaces, not at hyphens or underscores.
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If the block contains spaces, use @w{@code{...}} or @w{@samp{...}} to prevent unexpected
line breaks.

The Texinfo settings txicodequoteundirected and txicodequotebacktick are both set in
the manuals, so backticks (`) and apostrophes (') placed within blocks of @code, @example,
or @verbatim are not converted to left- and right-angled quotes (‘ ’) as they normally are
within the text, so the apostrophes in ‘@w{@code{\relative c''}}’ will display correctly.
However, these settings do not affect the PDF output for anything within a @samp block
(even if it includes a nested @code block), so entering ‘@w{@samp{\relative c''}}’ wrongly
produces ‘\relative c’’’ in PDF. Consequently, if you want to use a @samp{...} block
which contains backticks or apostrophes, you should instead use ‘@q{@code{...}}’ (or
‘@q{@w{@code{...}}}’ if the block also contains spaces). Note that backslashes within
@q{...} blocks must be entered as ‘@bs{}’, so the example above would be coded as
‘@q{@w{@code{@bs{}relative c''}}}’.

• @command{...} — Use when referring to command-line commands within the text (eg.
‘@command{convert-ly}’). Do not use inside an @example block.

• @example — Use for examples of program code. Do not add extraneous indentation (i.e.
don’t start every line with whitespace). Use the following layout (notice the use of blank
lines). Omit the @noindent if the text following the example starts a new paragraph:

...text leading into the example...

@example

...

@end example

@noindent

continuation of the text...

Individual lines within an @example block should not exceed 74 characters; otherwise they
will run into the margin in the PDF output, and may get clipped. If an @example block
is part of an @item, individual lines in the @example block should not exceed 70 columns.
Each additional level of @itemize or @enumerate shortens the line by about 4 columns.

For long command line examples, if possible, use a trailing backslash to break up a single
line, indenting the next line with 2 spaces. If this isn’t feasible, use ‘@smallexample ...

@end smallexample’ instead, which uses a smaller fontsize. Use @example whenever possi-
ble, but if needed, @smallexample can fit up to 90 characters per line before running into the
PDF margin. Each additional level of @itemize or @enumerate shortens a @smallexample

line by about 5 columns.

• @file{...} — Use when referring to filenames and directories in the text. Do not use
inside an @example block.

• @option{...} — Use when referring to command-line options in the text (eg.
‘@option{--format}’). Do not use inside an @example block.

• @verbatim — Prints the block exactly as it appears in the source file (including whitespace,
etc.). For program code examples, use @example instead. @verbatim uses the same format
as @example.

Individual lines within an @verbatim block should not exceed 74 characters; otherwise they
will run into the margin in the PDF output, and may get clipped. If an @verbatim block
is part of an @item, individual lines in the @verbatim block should not exceed 70 columns.
Each additional level of @itemize or @enumerate shortens the line by about 4 columns.

Indexing

• @cindex ... — General index. Please add as many as you can. Don’t capitalize the first
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word.

• @funindex ... — is for a \lilycommand.

Lists

• @enumerate — Create an ordered list (with numbers). Always put ‘@item’ on its own line.
As an exception, if all the items in the list are short enough to fit on single lines, placing
them on the ‘@item’ lines is also permissible. ‘@item’ and ‘@end enumerate’ should always
be preceded by a blank line.

@enumerate

@item

A long multi-line item like this one must begin

on a line of its own and all the other items in

the list must do so too.

@item

Even short ones

@end enumerate

@enumerate

@item Short item

@item Short item

@end enumerate

• @itemize — Create an unordered list (with bullets). Use the same format as @enumerate.
Do not use ‘@itemize @bullet’.

Special characters
☛ ✟

Note: In Texinfo, the backslash is an ordinary character, and is entered
without escaping (e.g. ‘The @code{\foo} command’). However, within
double-quoted Scheme and/or LilyPond strings, backslashes (including
those ending up in Texinfo markup) need to be escaped by doubling
them:

(define (foo x)

"The @code{\\foo} command..."

...)
✡ ✠

• --, --- — Create an en dash (–) or an em dash (—) in the text. To print two or three
literal hyphens in a row, wrap one of them in a @w{...} (eg. ‘-@w{-}-’).

• @@, @{, @} — Create an at-sign (@), a left curly bracket ({), or a right curly bracket (}).

• @bs{} — Create a backslash within a @q{...}, @qq{...}, or @warning{...} block. This is
a custom LilyPond macro, not a builtin @-command in Texinfo. Texinfo would also allow
‘\\’, but this breaks the PDF output.

• @tie{} — Create a variable-width non-breaking space in the text (use ‘@w{ }’ for a single
fixed-width non-breaking space). Variables or numbers which consist of a single character
(probably followed by a punctuation mark) should be tied properly, either to the previous
or the next word. Example: ‘The letter@tie{}@q{I} is skipped’
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Miscellany

• @notation{...} — refers to pieces of notation, e.g. ‘@notation{clef}’. Also use for
specific lyrics (‘the @notation{A - men} is centered’). Only use once per subsection per
term.

• @q{...} — Single quotes. Used for ‘vague’ terms. To get a backslash (\), you must use
‘@bs{}’.

• @qq{...} — Double quotes. Used for actual quotes (“he said”) or for introducing special
input modes. To get a backslash (\), you must use ‘@bs{}’.

• @var{...} — Use for metasyntactic variables (such as foo, bar, arg1, etc.). In most cases,
when the @var{...} command appears in the text (and not in an @example block) it should
be wrapped with an appropriate texinfo code-highlighting command (such as @code, @samp,
@file, @command, etc.). For example: ‘@code{@var{foo}}’, ‘@file{@var{myfile.ly}}’,
‘@samp{git checkout @var{branch}}’, etc. This improves readability in the PDF and
HTML output.

• @version{} — Return the current LilyPond version string. Use ‘@w{@version{}}’ if it’s
at the end of a line (to prevent an ugly line break in PDF); use ‘@w{"@version{}"}’ if you
need it in quotes.

• @w{...} — Do not allow any line breaks.

• @warning{...} — produces a “Note: ” box. Use for important messages. To get a backslash
(\), you must use ‘@bs{}’.

5.4.7 Other text concerns

• References must occur at the end of a sentence, for more information see the texinfo manual
(http://www.gnu.org/software/texinfo/manual/texinfo/). Ideally this should also be
the final sentence of a paragraph, but this is not required. Any link in a doc section must
be duplicated in the @seealso section at the bottom.

• Introducing examples must be done with

. (i.e. finish the previous sentence/paragraph)

: (i.e. `in this example:')

, (i.e. `may add foo with the blah construct,')

The old “sentence runs directly into the example” method is not allowed any more.

• Abbrevs in caps, e.g., HTML, DVI, MIDI, etc.

• Colon usage

1. To introduce lists

2. When beginning a quote: “So, he said,...”.

This usage is rarer. Americans often just use a comma.

3. When adding a defining example at the end of a sentence.

• Non-ASCII characters which are in utf-8 should be directly used; this is, don’t say
‘Ba@ss{}tuba’ but ‘Baßtuba’. This ensures that all such characters appear in all output
formats.

5.5 Documentation policy

5.5.1 Books

There are four parts to the documentation: the Learning Manual, the Notation Reference, the
Program Reference, and the Music Glossary.

http://www.gnu.org/software/texinfo/manual/texinfo/
http://www.gnu.org/software/texinfo/manual/texinfo/
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• Learning Manual:

The LM is written in a tutorial style which introduces the most important concepts, struc-
ture and syntax of the elements of a LilyPond score in a carefully graded sequence of steps.
Explanations of all musical concepts used in the Manual can be found in the Music Glos-
sary, and readers are assumed to have no prior knowledge of LilyPond. The objective is to
take readers to a level where the Notation Reference can be understood and employed to
both adapt the templates in the Appendix to their needs and to begin to construct their
own scores. Commonly used tweaks are introduced and explained. Examples are provided
throughout which, while being focussed on the topic being introduced, are long enough
to seem real in order to retain the readers’ interest. Each example builds on the previous
material, and comments are used liberally. Every new aspect is thoroughly explained before
it is used.

Users are encouraged to read the complete Learning Manual from start-to-finish.

• Notation Reference: a (hopefully complete) description of LilyPond input notation. Some
material from here may be duplicated in the Learning Manual (for teaching), but consider
the NR to be the "definitive" description of each notation element, with the LM being an
"extra". The goal is not to provide a step-by-step learning environment – do not avoid
using notation that has not be introduced previously in the NR (for example, use \break if
appropriate). This section is written in formal technical writing style.

Avoid duplication. Although users are not expected to read this manual from start to fin-
ish, they should be familiar with the material in the Learning Manual (particularly “Fun-
damental Concepts”), so do not repeat that material in each section of this book. Also
watch out for common constructs, like ^ - for directions – those are explained in NR 3.
In NR 1, you can write: DYNAMICS may be manually placed above or below the staff, see
@ref{Controlling direction and placement}.

Most tweaks should be added to LSR and not placed directly in the .itely file. In some
cases, tweaks may be placed in the main text, but ask about this first.

Finally, you should assume that users know what the notation means; explaining musical
concepts happens in the Music Glossary.

• Application Usage: information about using the program lilypond with other programs
(lilypond-book, operating systems, GUIs, convert-ly, etc). This section is written in formal
technical writing style.

Users are not expected to read this manual from start to finish.

• Music Glossary: information about the music notation itself. Explanations and translations
about notation terms go here.

Users are not expected to read this manual from start to finish.

• Internals Reference: not really a documentation book, since it is automagically generated
from the source, but this is its name.

5.5.2 Section organization

• The order of headings inside documentation sections should be:

main docs

@predefined

@endpredefined

@snippets

@seealso

@knownissues

• You must include a @seealso.

• The order of items inside the @seealso section is
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Music Glossary:

@rglos{foo},

@rglos{bar}.

Learning Manual:

@rlearning{baz},

@rlearning{foozle}.

Notation Reference:

@ruser{faazle},

@ruser{boo}.

Application Usage:

@rprogram{blah}.

Essay on automated music engraving:

@ressay{yadda}.

Extending LilyPond:

@rextend{frob}.

Installed Files:

@file{path/to/dir/blahz}.

Snippets: @rlsr{section}.

Internals Reference:

@rinternals{fazzle},

@rinternals{booar}.

• If there are multiple entries, separate them by commas but do not include an ‘and’.

• Always end with a period.

• Place each link on a new line as above; this makes it much easier to add or remove
links. In the output, they appear on a single line.

("Snippets" is REQUIRED; the others are optional)

• Any new concepts or links which require an explanation should go as a full sentence(s)
in the main text.

• Don’t insert an empty line between @seealso and the first entry! Otherwise there is
excessive vertical space in the PDF output.

• To create links, use @ref{} if the link is within the same manual.

• @predefined ... @endpredefined is for commands in ly/*-init.ly

• Do not include any real info in second-level sections (i.e. 1.1 Pitches). A first-level sec-
tion may have introductory material, but other than that all material goes into third-level
sections (i.e. 1.1.1 Writing Pitches).

• The @knownissues should not discuss any issues that are in the tracker, unless the issue
is Priority-Postponed. The goal is to discuss any overall architecture or syntax decisions
which may be interpreted as bugs. Normal bugs should not be discussed here, because we
have so many bugs that it would be a huge task to keep the @knownissues current and
accurate all the time.
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5.5.3 Checking cross-references

Cross-references between different manuals are heavily used in the documentation, but they are
not checked during compilation. However, if you compile the documentation, a script called
check texi refs can help you with checking and fixing these cross-references; for information on
usage, cd into a source tree where documentation has been built, cd into Documentation and
run:

make check-xrefs

make fix-xrefs

Note that you have to find yourself the source files to fix cross-references in the generated
documentation such as the Internals Reference; e.g. you can grep scm/ and lily/.

5.5.4 General writing

• Do not forget to create @cindex entries for new sections of text. Enter commands with
@funindex, i.e.

@cindex pitches, writing in different octaves

@funindex \relative

Do not bother with the @code{} (they are added automatically). These items are added to
both the command index and the unified index. Both index commands should go in front
of the actual material.

• @cindex entries should not be capitalized, i.e.

@cindex time signature

is preferred instead of “Time signature”. Only use capital letters for musical terms which
demand them, e.g. “D.S. al Fine”.

• For scheme function index entries, only include the final part, i.e.

@funindex modern-voice-cautionary

and NOT

@funindex #(set-accidental-style modern-voice-cautionary)

• Use American spelling. LilyPond’s internal property names use this convention.

• Here is a list of preferred terms to be used:

• Simultaneous NOT concurrent.

• Measure: the unit of music.

• Bar line: the symbol delimiting a measure NOT barline.

• Note head NOT notehead.

• Chord construct NOT just chord (when referring to < ... >)

• Staff NOT stave.

• Staves NOT Staffs: Phrases such as ‘multiple @internalsref{Staff}s’ should be
rephrased to ‘multiple @internalsref{Staff} contexts’.

5.5.5 Technical writing style

These refer to the NR. The LM uses a more gentle, colloquial style.

• Do not refer to LilyPond in the text. The reader knows what the manual is about. If you
do, capitalization is LilyPond.

• If you explicitly refer to ‘lilypond’ the program (or any other command to be executed),
write @command{lilypond}.

• Do not explicitly refer to the reader/user. There is no one else besides the reader and the
writer.
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• Avoid contractions (don’t, won’t, etc.). Spell the words out completely.

• Avoid abbreviations, except for commonly used abbreviations of foreign language terms
such as etc. and i.e.

• Avoid fluff (“Notice that,” “as you can see,” “Currently,”).

• The use of the word ‘illegal’ is inappropriate in most cases. Say ‘invalid’ instead.

5.6 Tips for writing docs

In the NR, I highly recommend focusing on one subsection at a time. For each subsection,

• check the mundane formatting. Are the headings (@predefined, @seealso, etc.) in the right
order?

• add any appropriate index entries.

• check the links in the @seealso section – links to music glossary, internal references, and
other NR sections are the main concern. Check for potential additions.

• move LSR-worthy material into LSR. Add the snippet, delete the material from the .itely

file, and add a @lilypondfile command.

• check the examples and descriptions. Do they still work? Do not assume that the existing
text is accurate/complete; some of the manual is highly out of date.

• is the material in the @knownissues still accurate?

• can the examples be improved (made more explanatory), or is there any missing info? (feel
free to ask specific questions on -user; a couple of people claimed to be interesting in being
“consultants” who would help with such questions)

In general, I favor short text explanations with good examples – “an example is worth a
thousand words”. When I worked on the docs, I spent about half my time just working on those
tiny lilypond examples. Making easily-understandable examples is much harder than it looks.

Tweaks

In general, any \set or \override commands should go in the “select snippets” section, which
means that they should go in LSR and not the .itely file. For some cases, the command
obviously belongs in the “main text” (i.e. not inside @predefined or @seealso or whatever) –
instrument names are a good example of this.

\set Staff.instrumentName = #"foo"

On the other side of this,

\override Score.Hairpin.after-line-breaking = ##t

clearly belongs in LSR.

I’m quite willing to discuss specific cases if you think that a tweaks needs to be in the main
text. But items that can go into LSR are easier to maintain, so I’d like to move as much as
possible into there.

It would be “nice” if you spent a lot of time crafting nice tweaks for users. . . but my
recommendation is not to do this. There’s a lot of doc work to do without adding examples of
tweaks. Tweak examples can easily be added by normal users by adding them to the LSR.

One place where a documentation writer can profitably spend time writing or upgrading
tweaks is creating tweaks to deal with known issues. It would be ideal if every significant known
issue had a workaround to avoid the difficulty.

See also

Section 7.2 [Adding and editing snippets], page 91.
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5.7 Scripts to ease doc work

5.7.1 Scripts to test the documentation

Building only one section of the documentation

In order to save build time, a script is available to build only one section of the documentation
in English with a default HTML appearance.

If you do not yet have a build/ subdirectory within the LilyPond Git tree, you should create
this first. You can then build a section of the documentation with the following command:

scripts/auxiliar/doc-section.sh MANUAL SECTION

where SECTION is the name of the file containing the section to be built, and MANUAL is replaced
by the name of the directory containing the section. So, for example, to build section 1.1 of the
Notation Reference, use the command:

scripts/auxiliar/doc-section.sh notation pitches

You can then see the generated document for the section at

build/tempdocs/pitches/out/pitches.html

According to LilyPond issue 1236 (https://sourceforge.net/p/testlilyissues/issues/
1236/), the location of the LilyPond Git tree is taken from $LILYPOND_GIT if specified, otherwise
it is auto-detected.

It is assumed that compilation takes place in the build/ subdirectory, but this can be
overridden by setting the environment variable LILYPOND_BUILD_DIR.

Similarly, output defaults to build/tempdocs/ but this can be overridden by setting the
environment variable LILYPOND_TEMPDOCS.

This script will not work for building sections of the Contributors’ Guide. For building
sections of the Contributors’ Guide, use:

scripts/auxiliar/cg-section.sh SECTION

where SECTION is the name of the file containing the sections to be built. For example, to build
section 4 of the Contributors’ Guide, use:

scripts/auxiliar/cg-section.sh doc-work

cg-section.sh uses the same environment variables and corresponding default values as
doc-section.sh.

5.7.2 Scripts to create documentation

Stripping whitespace and generating menus
☛ ✟

Note: This script assumes that the file conforms to our doc policy, in
particular with regard to Section 5.4.3 [Sectioning commands], page 62;
a few files still need work in this regard.
✡ ✠

To automatically regenerate @menu portions and strip whitespace, use:

scripts/auxiliar/node-menuify.py FILENAME

If you are adding documentation that requires new menus, you will need to add a blank
@menu section:

@menu

@end menu

https://sourceforge.net/p/testlilyissues/issues/1236/
https://sourceforge.net/p/testlilyissues/issues/1236/
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Stripping whitespace only

To remove extra whitespace from the ends of lines, run

scripts/auxiliar/strip-whitespace.py FILENAME

Updating doc with convert-ly

Don’t. This should be done by programmers when they add new features. If you notice that it
hasn’t been done, complain to lilypond-devel.

5.8 Docstrings in scheme

Material in the Internals reference is generated automatically from our source code. Any doc
work on Internals therefore requires modifying files in scm/*.scm. Texinfo is allowed in these
docstrings.

Most documentation writers never touch these, though. If you want to work on them, please
ask for help.

5.9 Translating the documentation

The mailing list translations@lilynet.net is dedicated to LilyPond web site and documenta-
tion translation; on this list, you will get support from the Translations Meister and experienced
translators, and we regularly discuss translation issues common to all languages. All people in-
terested in LilyPond translations are invited to subscribe to this list regardless of the amount of
their contribution, by sending an email to translations-request@lilynet.net with subject
subscribe and an empty message body. Unless mentioned explicitly, or except if a transla-
tions coordinator contacts you privately, you should send questions, remarks and patches to
the list translations@lilynet.net. Please note that traffic is high on the English-speaking
list lilypond-user@gnu.org, so it may take some time before your request or contribution is
handled.

5.9.1 Getting started with documentation translation

First, get the sources of branch translation from the Git repository, see Section 3.2 [Starting
with Git], page 14.

Translation requirements

Working on LilyPond documentation translations requires the following pieces of software, in
order to make use of dedicated helper tools:

• Python 2.4 or higher,

• GNU Make,

• Gettext,

• Git.

It is not required to build LilyPond and the documentation to translate the documentation.
However, if you have enough time and motivation and a suitable system, it can be very useful
to build at least the documentation so that you can check the output yourself and more quickly;
if you are interested, see Chapter 4 [Compiling], page 44.

Before undertaking any large translation work, contributors are encouraged to contact the
Section 14.3 [Meisters], page 170.

Which documentation can be translated

The makefiles and scripts infrastructure currently supports translation of the following docu-
mentation:
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• the web site, the Learning Manual, the Notation Reference and Application Usage – Texinfo
source, PDF and HTML output; Info output might be added if there is enough demand for
it;

• the Changes document.

Support for translating the following pieces of documentation should be added soon, by
decreasing order of priority:

• automatically generated documentation: markup commands, predefined music functions;

• the Snippets List;

• the Internals Reference.

Starting translation in a new language

At top of the source directory, do

./autogen.sh

or (if you want to install your self-compiled LilyPond locally)

./autogen.sh --prefix=$HOME

If you want to compile LilyPond – which is almost required to build the documentation, but
is not required to do translation only – fix all dependencies and rerun ./configure (with the
same options as for autogen.sh).

Then cd into Documentation/ and run

make ISOLANG=MY-LANGUAGE new-lang

where MY-LANGUAGE is the ISO 639 language code.

Finally, add a language definition for your language in python/langdefs.py,
Documentation/lilypond-texi2html-lang.init and Documentation/web/server/lilypond.org.htaccess

Add this language definition and the corresponding section in Documentation/lilypond-texi2html.init

and scripts/build/create-weblinks-itexi.py.

5.9.2 Documentation translation details

Please follow all the instructions with care to ensure quality work.

All files should be encoded in UTF-8.

Files to be translated

Translation of Documentation/foo/bar should be Documentation/LANG/foo/bar. Unmen-
tioned files should not be translated.

Priorities:

• 1. delivery,

• 2. 3. 4. 5. 6. later,

• 7. optional.

Files of priority 1 should be submitted along all files generated by starting a new language
in the same commit and thus a unique patch, and the translation of files marked with priority 2
should be committed to Git at the same time and thus sent in a single patch. Files marked with
priority 3 or more may be submitted individually. Word counts (excluding LilyPond snippets)
are given for each file. For knowing how to commit your work to Git, then make patches of
your new translations as well as corrections and updates, see Section 3.3 [Basic Git procedures],
page 23.

-1- Web site

750 web.texi
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5937 web/introduction.itexi

1158 web/download.itexi

1139 macros.itexi

9 po/lilypond-doc.pot (translate to po/MY_LANGUAGE.po)

0 search-box.ihtml

--- lilypond-texi2html.init (section TRANSLATIONS)

8993 total

-2- Tutorial

1314 web/manuals.itexi

124 learning.tely

2499 learning/tutorial.itely

4458 learning/common-notation.itely

8395 total

-3- Fundamental Concepts, starting of Usage and Community

11458 learning/fundamental.itely -- Fundamental concepts

135 usage.tely

5433 usage/running.itely

2097 usage/updating.itely

2364 web/community.itexi

21487 total

-4- Rest of Learning manual and Suggestions on writing LilyPond files

16570 learning/tweaks.itely -- Tweaking output

1236 learning/templates.itely -- Templates

2793 usage/suggestions.itely -- Suggestions on writing LilyPond files

20599 total

-5- Notation reference

326 notation.tely

91 notation/notation.itely -- Musical notation

5425 notation/pitches.itely

6854 notation/rhythms.itely

1819 notation/expressive.itely

1288 notation/repeats.itely

2979 notation/simultaneous.itely

2554 notation/staff.itely

1481 notation/editorial.itely

3256 notation/text.itely

81 notation/specialist.itely -- Specialist notation

4977 notation/vocal.itely

1975 notation/chords.itely

702 notation/piano.itely

753 notation/percussion.itely

826 notation/guitar.itely

66 notation/strings.itely

242 notation/bagpipes.itely

5437 notation/ancient.itely

13276 notation/input.itely -- Input syntax

2164 notation/non-music.itely -- Non-musical notation

10982 notation/spacing.itely -- Spacing issues
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17050 notation/changing-defaults.itely -- Changing defaults

5187 notation/programming-interface.itely -- Interfaces for programmers

3382 notation/notation-appendices.itely -- Notation manual tables

252 notation/cheatsheet.itely -- Cheat sheet

93425 total

-6- Rest of Application Usage

4211 usage/lilypond-book.itely -- LilyPond-book

1122 usage/converters.itely -- Converting from other formats

5333 total

-7- Appendices whose translation is optional

382 essay/literature.itely

1222 learning/scheme-tutorial.itely (should be revised first)

1604 total

In addition, not listed above, Snippets’ titles and descriptions should be translated; they are
a part of the Notation Reference and therefore their priority is 5.

Translating the Web site and other Texinfo documentation

Every piece of text should be translated in the source file, except Texinfo comments, text in
@lilypond blocks and a few cases mentioned below.

Node names are translated, but the original node name in English should be kept as the
argument of @translationof put after the section title; that is, every piece in the original file
like

@node Foo bar

@section_command Bar baz

should be translated as

@node translation of Foo bar

@section_command translation of Bar baz

@translationof Foo bar

The argument of @rglos commands and the first argument of @rglosnamed commands must
not be translated, as it is the node name of an entry in Music Glossary.

Every time you translate a node name in a cross-reference, i.e. the argument of commands
@ref, @rprogram, @rlearning, @rlsr, @ruser or the first argument of their *named variants,
you should make sure the target node is defined in the correct source file; if you do not intend
to translate the target node right now, you should at least write the node definition (that is, the
@node @section_commmand @translationof trio mentioned above) in the expected source file
and define all its parent nodes; for each node you have defined this way but have not translated,
insert a line that contains @untranslated. That is, you should end up for each untranslated
node with something like

@node translation of Foo bar

@section_command translation of Bar baz

@translationof Foo bar

@untranslated
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☛ ✟

Note: you do not have to translate the node name of a cross-reference
to a node that you do not have translated. If you do, you must define
an “empty” node like explained just above; this will produce a cross-
reference with the translated node name in output, although the target
node will still be in English. On the opposite, if all cross-references that
refer to an untranslated node use the node name in English, then you
do not have to define such an “empty” node, and the cross-reference
text will appear in English in the output. The choice between these two
strategies implies its particular maintenance requirements and is left to
the translators, although the opinion of the Translation meister leans
towards not translating these cross-references.
✡ ✠

Please think of the fact that it may not make sense translating everything in some Texinfo
files, and you may take distance from the original text; for instance, in the translation of the
web site section Community, you may take this into account depending on what you know the
community in your language is willing to support, which is possible only if you personally assume
this support, or there exists a public forum or mailing list listed in Community for LilyPond in
your language:

• Section “Bug reports” in General Information: this page should be translated only if you
know that every bug report sent on your language’s mailing list or forum will be handled
by someone who will translate it to English and send it on bug-lilypond or add an issue in
the tracker, then translate back the reply from developers.

• Section “Help us” in Contributor’s Guide: this page should be translated very freely, and
possibly not at all: ask help for contributing to LilyPond for tasks that LilyPond community
in your language is able and going to handle.

In any case, please mark in your work the sections which do not result from the direct translation
of a piece of English translation, using comments i.e. lines starting with ‘@c’.

Finally, press in Emacs C-c C-u C-a to update or generate menus. This process should be
made easier in the future, when the helper script texi-langutils.py and the makefile target
are updated.

Some pieces of text manipulated by build scripts that appear in the output are translated in
a .po file – just like LilyPond output messages – in Documentation/po. The Gettext domain
is named lilypond-doc, and unlike lilypond domain it is not managed through the Free
Translation Project.

Take care of using typographic rules for your language, especially in macros.itexi.

If you wonder whether a word, phrase or larger piece of text should be translated, whether
it is an argument of a Texinfo command or a small piece sandwiched between two Texinfo
commands, try to track whether and where it appears in PDF and/or HTML output as visible
text. This piece of advice is especially useful for translating macros.itexi.

Please keep verbatim copies of music snippets (in @lilypond blocs). However, some music
snippets containing text that shows in the rendered music, and sometimes translating this text
really helps the user to understand the documentation; in this case, and only in this case,
you may as an exception translate text in the music snippet, and then you must add a line
immediately before the @lilypond block, starting with

@c KEEP LY

Otherwise the music snippet would be reset to the same content as the English version at next
make snippet-update run – see [Updating documentation translation], page 81.

When you encounter

@lilypondfile[<number of fragment options>,texidoc]{filename.ly}

in the source, open Documentation/snippets/filename.ly, translate the texidoc

header field it contains, enclose it with texidocMY-LANGUAGE = " and ", and write it
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into Documentation/MY-LANGUAGE/texidocs/filename.texidoc. Additionally, you may
translate the snippet’s title in doctitle header field, in case doctitle is a fragment option
used in @lilypondfile; you can do this exactly the same way as texidoc. For instance,
Documentation/MY-LANGUAGE/texidocs/filename.texidoc may contain

doctitlees = "Spanish title baz"

texidoces = "

Spanish translation blah

"

@example blocks need not be verbatim copies, e.g. variable names, file names and comments
should be translated.

Finally, please carefully apply every rule exposed in Section 5.4 [Texinfo introduction
and usage policy], page 61, and Section 5.5 [Documentation policy], page 69. If one
of these rules conflicts with a rule specific to your language, please ask the Translation
meister on translations@lilynet.net list and/or the Documentation Editors on
lilypond-devel@gnu.org list.

Adding a Texinfo manual

In order to start translating a new manual whose basename is FOO, do

cd Documentation/MY-LANGUAGE

cp ../FOO.tely .

mkdir FOO

cp web/GNUmakefile FOO

then append FOO to variable SUBDIRS in Documentation/MY-LANGUAGE/GNUmakefile,
then translate file MY-LANGUAGE/FOO.tely and run skeleton-update:

cd Documentation/

make ISOLANG=MY-LANGUAGE TEXI_LANGUTIL_FLAGS=--head-only skeleton-update

Your are now ready to translate the new manual exactly like the web site or the Learning
Manual.

5.9.3 Documentation translation maintenance

Several tools have been developed to make translations maintenance easier. These helper scripts
make use of the power of Git, the version control system used for LilyPond development.

You should use them whenever you would like to update the translation in your language,
which you may do at the frequency that fits your and your cotranslators’ respective available
times. In the case your translation is up-do-date (which you can discover in the first subsection
below), it is enough to check its state every one or two weeks. If you feel overwhelmed by
the quantity of documentation to be updated, see [Maintaining without updating translations],
page 83.

Check state of translation

First pull from Git – see Section 3.3.2 [Pulling and rebasing], page 23, but DO NOT rebase
unless you are sure to master the translation state checking and updating system – then cd into
Documentation/ (or at top of the source tree, replace make with make -C Documentation) and
run

make ISOLANG=MY_LANGUAGE check-translation

This presents a diff of the original files since the most recent revision of the translation. To
check a single file, cd into Documentation/ and run

make CHECKED_FILES=MY_LANGUAGE/manual/foo.itely check-translation

mailto:translations@lilynet.net
mailto:lilypond-devel@gnu.org
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In case this file has been renamed since you last updated the translation, you should specify
both old and new file names, e.g. CHECKED_FILES=MY_LANGUAGE/{manual,user}/foo.itely.

To see only which files need to be updated, do

make ISOLANG=MY_LANGUAGE check-translation | grep 'diff --git'

To avoid printing terminal colors control characters, which is often desirable when you redirect
output to a file, run

make ISOLANG=MY_LANGUAGE NO_COLOR=1 check-translation

You can see the diffs generated by the commands above as changes that you should make in
your language to the existing translation, in order to make your translation up to date.

☛ ✟

Note: do not forget to update the committish in each file you have
completely updated, see [Updating translation committishes], page 82.
✡ ✠

Global state of the translation is recorded in Documentation/translations.itexi, which
is used to generate Translations status page. To update that page, do from Documentation/

make translation-status

This will also leave out/translations-status.txt, which contains up-to-dateness percent-
ages for each translated file, and update word counts of documentation files in this Guide.

See also

[Maintaining without updating translations], page 83.

Updating documentation translation

Instead of running check-translation, you may want to run update-translation, which will
run your favorite text editor to update files. First, make sure environment variable EDITOR is
set to a text editor command, then run from Documentation/

make ISOLANG=MY_LANGUAGE update-translation

or to update a single file

make CHECKED_FILES=MY_LANGUAGE/manual/foo.itely update-translation

For each file to be updated, update-translation will open your text editor with this file
and a diff of the file in English; if the diff cannot be generated or is bigger than the file in English
itself, the full file in English will be opened instead.

☛ ✟

Note: do not forget to update the committish in each file you have
completely updated, see [Updating translation committishes], page 82.
✡ ✠

Texinfo skeleton files, i.e. .itely files not yet translated, containing only the first node of
the original file in English can be updated automatically: whenever make check-translation

shows that such files should be updated, run from Documentation/

make ISOLANG=MY_LANGUAGE skeleton-update

.po message catalogs in Documentation/po/ may be updated by issuing from
Documentation/ or Documentation/po/

make po-update
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☛ ✟

Note: if you run po-update and somebody else does the same and pushes
before you push or send a patch to be applied, there will be a conflict
when you pull. Therefore, it is better that only the Translation meister
runs this command. Furthermore, it has been borken since the GDP:
variable names and comments do no longer appear as translated.
✡ ✠

Updating music snippets can quickly become cumbersome, as most snippets should be iden-
tical in all languages. Fortunately, there is a script that can do this odd job for you (run from
Documentation/):

make ISOLANG=MY_LANGUAGE snippet-update

This script overwrites music snippets in MY_LANGUAGE/foo/every.itely with music snippets
from foo/every.itely. It ignores skeleton files, and keeps intact music snippets preceded with
a line starting with @c KEEP LY; it reports an error for each .itely that has not the same music
snippet count in both languages. Always use this script with a lot of care, i.e. run it on a clean
Git working tree, and check the changes it made with git diff before committing; if you don’t
do so, some @lilypond snippets might be broken or make no sense in their context.

Finally, a command runs the three update processes above for all enabled languages (from
Documentation/):

make all-translations-update

Use this command with caution, and keep in mind it will not be really useful until translations
are stabilized after the end of GDP and GOP.

See also

[Maintaining without updating translations], page 83, Section 7.2 [Adding and editing snip-
pets], page 91.

Updating translation committishes

At the beginning of each translated file except PO files, there is a committish which represents
the revision of the sources which you have used to translate this file from the file in English.

When you have pulled and updated a translation, it is very important to update this commit-
tish in the files you have completely updated (and only these); to do this, first commit possible
changes to any documentation in English which you are sure to have done in your translation
as well, then replace in the up-to-date translated files the old committish by the committish of
latest commit, which can be obtained by doing

git rev-list HEAD |head -1

Most of the changes in the LSR snippets included in the documentation concern the syntax,
not the description inside texidoc="". This implies that quite often you will have to update
only the committish of the matching .texidoc file. This can be a tedious work if there are
many snippets to be marked as up do date. You can use the following command to update the
committishes at once:

cd Documentation/LANG/texidocs

sed -i -r 's/[0-9a-z]{40}/NEW-COMMITTISH/' *.texidoc

See also

Chapter 7 [LSR work], page 91.

5.9.4 Translations management policies

These policies show the general intent of how the translations should be managed, they aim at
helping translators, developers and coordinators work efficiently.
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Maintaining without updating translations

Keeping translations up to date under heavy changes in the documentation in English may be
almost impossible, especially as during the former Grand Documentation Project (GDP) or the
Grand Organization Project (GOP) when a lot of contributors brings changes. In addition,
translators may be — and that is a very good thing — involved in these projects too.

it is possible — and even recommended — to perform some maintenance that keeps translated
documentation usable and eases future translation updating. The rationale below the tasks list
motivates this plan.

The following tasks are listed in decreasing priority order.

1. Update macros.itexi. For each obsolete macro definition, if it is possible to update macro
usage in documentation with an automatic text or regexp substitution, do it and delete
the macro definition from macros.itexi; otherwise, mark this macro definition as obsolete
with a comment, and keep it in macros.itexi until the documentation translation has been
updated and no longer uses this macro.

2. Update *.tely files completely with make check-translation – you may want to redirect
output to a file because of overwhelming output, or call check-translation.py on individual
files, see [Check state of translation], page 80.

3. In .itelys, match sections and .itely file names with those from English docs, which possi-
bly involves moving nodes contents in block between files, without updating contents itself.
In other words, the game is catching where has gone each section. In Learning manual, and
in Notation Reference sections which have been revised in GDP, there may be completely
new sections: in this case, copy @node and @section-command from English docs, and
add the marker for untranslated status @untranslated on a single line. Note that it is
not possible to exactly match subsections or subsubsections of documentation in English,
when contents has been deeply revised; in this case, keep obsolete (sub)subsections in the
translation, marking them with a line @c obsolete just before the node.

Emacs with Texinfo mode makes this step easier:

• without Emacs AucTeX installed, C-c C-s shows structure of current Texinfo file in
a new buffer *Occur*; to show structure of two files simultaneously, first split Emacs
window in 4 tiles (with C-x 1 and C-x 2), press C-c C-s to show structure of one file
(e.g. the translated file), copy *Occur* contents into *Scratch*, then press C-c C-s

for the other file.

If you happen to have installed AucTeX, you can either call the macro by doing M-x

texinfo-show-structure or create a key binding in your ~/.emacs, by adding the
four following lines:

(add-hook 'Texinfo-mode-hook

'(lambda ()

(define-key Texinfo-mode-map "\C-cs"

'texinfo-show-structure)))

and then obtain the structure in the *Occur* buffer with C-c s.

• Do not bother updating @menus when all menu entries are in the same file, just do C-c

C-u C-a (“update all menus”) when you have updated all the rest of the file.

• Moving to next or previous node using incremental search: press C-s and type node

(or C-s @node if the text contains the word ‘node’) then press C-s to move to next
node or C-r to move to previous node. Similar operation can be used to move to
the next/previous section. Note that every cursor move exits incremental search, and
hitting C-s twice starts incremental search with the text entered in previous incremental
search.
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• Moving a whole node (or even a sequence of nodes): jump to beginning of the node
(quit incremental search by pressing an arrow), press C-SPACE, press C-s node and
repeat C-s until you have selected enough text, cut it with C-w or C-x, jump to the
right place (moving between nodes with the previous hint is often useful) and paste
with C-y or C-v.

4. Update sections finished in the English documentation; check sections status at
http://lilypondwiki.tuxfamily.org/index.php?title=Documentation_coordination.

5. Update documentation PO. It is recommended not to update strings which come from
documentation that is currently deeply revised in English, to avoid doing the work more
than once.

6. Fix broken cross-references by running (from Documentation/)

make ISOLANG=YOUR-LANGUAGE fix-xrefs

This step requires a successful documentation build (with make doc). Some cross-references
are broken because they point to a node that exists in the documentation in English, which
has not been added to the translation; in this case, do not fix the cross-reference but keep it
"broken", so that the resulting HTML link will point to an existing page of documentation
in English.

Rationale

You may wonder if it would not be better to leave translations as-is until you can really start
updating translations. There are several reasons to do these maintenance tasks right now.

• This will have to be done sooner or later anyway, before updating translation of docu-
mentation contents, and this can already be done without needing to be redone later, as
sections of documentation in English are mostly revised once. However, note that not all
documentation sectioning has been revised in one go, so all this maintenance plan has to
be repeated whenever a big reorganization is made.

• This just makes translated documentation take advantage of the new organization, which
is better than the old one.

• Moving and renaming sections to match sectioning of documentation in English simplify fu-
ture updating work: it allows updating the translation by side-by-side comparison, without
bothering whether cross-reference names already exist in the translation.

• Each maintenance task except ‘Updating PO files’ can be done by the same person for
all languages, which saves overall time spent by translators to achieve this task: the node
names and section titles are in English, so you can do. It is important to take advantage
of this now, as it will be more complicated (but still possible) to do step 3 in all languages
when documentation is compiled with texi2html and node names are directly translated
in source files.

Managing documentation translation with Git

This policy explains how to manage Git branches and commit translations to Git.

• Translation work is made on translation branch. This branch is merged on staging once
a week, approximately. Then, master branch is merged on translation, where the check-
translation script (see [Check state of translation], page 80) shows changes in English docs
which should be translated, and the cycle starts again.

• Translations may be pushed directly to staging only if they do not break compilation of
LilyPond and its documentation. Those changes could be pushed to translation too,
or alternatively translators could wait until they come from master the next time it is
merged on translation. Similarly, changes matching stable/X.Y are preferably made on
X.Ytranslation.

http://lilypondwiki.tuxfamily.org/index.php?title=Documentation_coordination
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• translation Git branch may be merged into staging branch only if LilyPond (make all)
and documentation (make doc) compile successfully.

• make and make doc are usually successful in master Git branch because those tests should
have already succeeded in staging branch before merging. master branch may be merged
into translation when significant changes had been made in documentation in English in
master branch.

• General maintenance may be done by anybody who knows what he does in documentation
in all languages, without informing translators first. General maintenance include simple
text substitutions (e.g. automated by sed), compilation fixes, updating Texinfo or lilypond-
book commands, updating macros, updating ly code, fixing cross-references, and operations
described in [Maintaining without updating translations], page 83.

5.9.5 Technical background

A number of Python scripts handle a part of the documentation translation process. All scripts
used to maintain the translations are located in scripts/auxiliar/.

• check_translation.py – show diff to update a translation,

• texi-langutils.py – quickly and dirtily parse Texinfo files to make message catalogs and
Texinfo skeleton files,

• texi-skeleton-update.py – update Texinfo skeleton files,

• update-snippets.py – synchronize ly snippets with those from English docs,

• translations-status.py – update translations status pages and word counts in the file
you are reading,

• tely-gettext.py – gettext node names, section titles and references in the sources; WARN-
ING only use this script once for each file, when support for "makeinfo –html" has been
dropped.

Other scripts are used in the build process, in scripts/build/:

• mass-link.py – link or symlink files between English documentation and documentation
in other languages.

Python modules used by scripts in scripts/auxiliar/ or scripts/build/ (but not by
installed Python scripts) are located in python/auxiliar/:

• manuals_definitions.py – define manual names and name of cross-reference Texinfo
macros,

• buildlib.py – common functions (read piped output of a shell command, use Git),

• postprocess_html.py (module imported by www_post.py) – add footer and tweak links
in HTML pages.

And finally

• python/langdefs.py – language definitions module
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6 Website work

6.1 Introduction to website work

The website is not written directly in HTML; instead it is autogenerated along with the doc-
umentation through a sophisticated setup, using Texinfo source files. Texinfo is the standard
for documentation of GNU software and allows generating output in HTML, PDF, and Info
formats, which drastically reduces maintenance effort and ensures that the website content is
consistent with the rest of the documentation. This makes the environment for improving the
website rather different from common web development.

If you have not contributed to LilyPond before, a good starting point might be incremental
changes to the CSS file, to be found at http://lilypond.org/css/lilypond-website.css or
in the LilyPond source code at ./Documentation/css/lilypond-website.css.

Large scale structural changes tend to require familiarity with the project in general, a track
record in working on LilyPond documentation as well as a prospect of long-term commitment.

The Texinfo source file for generating HTML are to be found in

Documentation/web.texi

Documentation/web/*.texi

Unless otherwise specified, follow the instructions and policies given in Chapter 5 [Documen-
tation work], page 59. That chapter also contains a quick introduction to Texinfo; consulting
an external Texinfo manual should be not necessary.

Exceptions to the documentation policies

• Sectioning: the website only uses chapters and sections; no subsections or subsubsections.

• @ref{}s to other manuals (@ruser, @rlearning, etc): you can’t link to any pieces of auto-
matically generated documentation, like the IR or certain NR appendices.

• The bibliography in Community->Publications is generated automatically from .bib files;
formatting is done automatically by texi-web.bst.

• . . .

• For anything not listed here, just follow the same style as the existing website texinfo files.

6.2 Uploading and security

Overall idea

To reduce the CPU burden on the shared host (as well as some security concerns), we do
not compile all of LilyPond. The website build process runs texi2html, but all media
files (be they graphical lilypond output, photos of people, or pdfs) are copied from the
$LILYPOND_WEB_MEDIA_GIT repository.

All scripts and makefiles used for the website build are run from a “trusted” copy. Any
modification to those files in git needs a human to review the changes (after they have been
made in git) before they are used on the server.

Building the website (quick local)

Initial setup: make sure that you have the environment variables $LILYPOND_GIT,
$LILYPOND_BUILD_DIR and $LILYPOND_WEB_MEDIA_GIT set up correctly. For more information,
see Section 14.2 [Environment variables], page 170.

Once that is done,

cd $LILYPOND_BUILD_DIR

http://lilypond.org/css/lilypond-website.css
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make website

The website is in out-website/website/index.html.

Building the website (exactly as on the server)

Setting up (exactly as on the server)

Initial setup: you still need $LILYPOND_GIT and $LILYPOND_WEB_MEDIA_GIT.

Once that’s done, create:

mkdir -p $HOME/lilypond/

mkdir -p $HOME/lilypond/bin/

mkdir -p $HOME/lilypond/cron/

mkdir -p $HOME/lilypond/trusted-scripts/

The add these files to $HOME/lilypond/bin/:

Update git repositories:

### update-git.sh

#!/bin/sh

cd $LILYPOND_GIT

git fetch origin

git merge origin/master

cd $LILYPOND_WEB_MEDIA_GIT

git fetch origin

git merge origin/master

Check for any updates to trusted scripts / files:

### check-git.sh

#!/bin/sh

DEST=$HOME/lilypond/trusted-scripts

diff -u $DEST/website.make \

$LILYPOND_GIT/make/website.make

diff -u $DEST/lilypond-texi2html.init \

$LILYPOND_GIT/Documentation/lilypond-texi2html.init

diff -u $DEST/extract_texi_filenames.py \

$LILYPOND_GIT/scripts/build/extract_texi_filenames.py

diff -u $DEST/create-version-itexi.py \

$LILYPOND_GIT/scripts/build/create-version-itexi.py

diff -u $DEST/create-weblinks-itexi.py \

$LILYPOND_GIT/scripts/build/create-weblinks-itexi.py

diff -u $DEST/mass-link.py \

$LILYPOND_GIT/scripts/build/mass-link.py

diff -u $DEST/website_post.py \

$LILYPOND_GIT/scripts/build/website_post.py

diff -u $DEST/bib2texi.py \

$LILYPOND_GIT/scripts/build/bib2texi.py

diff -u $DEST/langdefs.py \

$LILYPOND_GIT/python/langdefs.py

diff -u $DEST/lilypond.org.htaccess \

$LILYPOND_GIT/Documentation/web/server/lilypond.org.htaccess

diff -u $DEST/website-dir.htaccess \

$LILYPOND_GIT/Documentation/web/server/website-dir.htaccess

If the changes look ok, make them trusted:

### copy-from-git.sh

#!/bin/sh

DEST=$HOME/lilypond/trusted-scripts

cp $LILYPOND_GIT/make/website.make \

$DEST/website.make

cp $LILYPOND_GIT/Documentation/lilypond-texi2html.init \

$DEST/lilypond-texi2html.init

cp $LILYPOND_GIT/scripts/build/extract_texi_filenames.py \

$DEST/extract_texi_filenames.py
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cp $LILYPOND_GIT/scripts/build/create-version-itexi.py \

$DEST/create-version-itexi.py

cp $LILYPOND_GIT/scripts/build/create-weblinks-itexi.py \

$DEST/create-weblinks-itexi.py

cp $LILYPOND_GIT/scripts/build/mass-link.py \

$DEST/mass-link.py

cp $LILYPOND_GIT/scripts/build/website_post.py \

$DEST/website_post.py

cp $LILYPOND_GIT/scripts/build/bib2texi.py \

$DEST/bib2texi.py

cp $LILYPOND_GIT/python/langdefs.py \

$DEST/langdefs.py

cp $LILYPOND_GIT/Documentation/web/server/lilypond.org.htaccess \

$DEST/lilypond.org.htaccess

cp $LILYPOND_GIT/Documentation/web/server/website-dir.htaccess \

$DEST/website-dir.htaccess

Build the website:

### make-website.sh

#!/bin/sh

DEST=$HOME/web/

BUILD=$HOME/lilypond/build-website

mkdir -p $BUILD

cd $BUILD

cp $HOME/lilypond/trusted-scripts/website.make .

make -f website.make WEBSITE_ONLY_BUILD=1 website

rsync -raO $BUILD/out-website/website/ $DEST/website/

cp $BUILD/out-website/pictures $DEST

cp $BUILD/out-website/.htaccess $DEST

Then in the cronjob/ directory, put the cronjob to automate the trusted portions:
☛ ✟

Note: cron will not inherit environment variables from your main setup,
so you must re-define any variables inside your crontab.
✡ ✠

# website-rebuild.cron

LILYPOND_GIT= ... fill this in

LILYPOND_WEB_MEDIA_GIT= ... fill this in

11 * * * * $HOME/lilypond/trusted-scripts/update-git.sh >/dev/null 2>&1

22 * * * * $HOME/lilypond/trusted-scripts/make-website.sh >/dev/null 2>&1

As the final stage of the setup, run your copy-from-git.sh script, assuming that you trust
the current state of scripts in lilypond git.

Normal maintenance

When there is a change to the build scripts and/or website makefile, log in to the server (or
your own home machine if you’re testing this there), and do

update-git.sh

check-git.sh

After reviewing the changes carefully, you can update the trusted scripts with
copy-from-git.sh.

Building the website (exactly as on the server)

Run make-website.sh; the final version ends up in $HOME/web/.

On the actual server, the website is generated hourly by user graham the host lilypond.org.
You can set up the cronjob by doing:

crontab $HOME/lilypond/website-rebuild.cron
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Initial setup for new users on actual serve

You should symlink your own ~/lilypond/ to ~graham/lilypond/

If this directory does not exist, make it. Git master should go in ~/lilypond/lilypond-git/

but make sure you enable:

git config core.filemode false

If you have created any files in ~graham/lilypond/ then please run:

chgrp lilypond ~graham/lilypond/ -R

chmod 775 ~graham/lilypond/ -R

Additional information

Some information about the website is stored in ~graham/lilypond/*.txt; this information
should not be shared with people without trusted access to the server.

6.3 Debugging website and docs locally

• Install Apache (you can use version 2, but keep in mind that the server hosting lilypond.org
runs version 1.3). These instructions assume that you also enable mod_userdir, and use
$HOME/public_html as DocumentRoot (i.e. the root directory of the web server).

• Build the online docs and website:

make WEB_TARGETS="offline online" doc

make website

This will make all the language variants of the website. To save a little time, just the English
version can be made with the command make WEB_LANGS='' website or the English and
(for example) the French with make WEB_LANGS='fr' website.

• Choose the web directory where to copy the built stuff. If you already have other web
projects in your DocumentRoot and don’t need to test the .htaccess file, you can copy
to ~/public_html/lilypond.org. Otherwise you’d better copy to ~/public_html. It’s
highly recommended to have your build dir and web dir on the same partition.

• Add the directory for the online documentation:

mkdir -p ~/public_html/doc/v2.19/

You may want to add also the stable documentation in ~/public_html/doc/v2.18/, ex-
tracting the contents of the html directory present in the tarball available in Section “All”
in General Information. Just in case you want to test the redirects to the stable documen-
tation.

• Copy the files with rsync:

rsync -av --delete out-website/website ~/public_html/

cp out-website/.htaccess ~/public_html

rsync -av --delete out-www/online-root/ ~/public_html/doc/v2.19/

6.4 Translating the website

As it has much more audience, the website should be translated before the documentation; see
Section 5.9 [Translating the documentation], page 75.

In addition to the normal documentation translation practices, there are a few additional
things to note:

• Build the website with:

make website



90

however, please note that this command is not designed for being run multiple times. If you
see unexpected output (mainly the page footers getting all messed up), then delete your
out-website directory and run make website again.

• Some of the translation infrastructure is defined in python files; you must look at the ###

translation data sections in:

scripts/build/create-weblinks-itexi.py

scripts/build/website_post.py

• Translations are not included by default in make website. To test your translation, edit the
WEB_LANGUAGES = line in python/langdefs.py. You will need to copy this updated script
to $LILYPOND_BUILD_DIR/python/out.

Do not submit a patch to add your language to this file unless make website completes
with fewer than 5 warnings.

• Links to manuals are done with macros like @manualDevelLearningSplit. To get trans-
lated links, you must change that to @manualDevelLearningSplit-es (for es/Spanish
translations, for example).
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7 LSR work

7.1 Introduction to LSR

The LilyPond Snippet Repository (LSR) (http://lsr.di.unimi.it/) is a collection of lilypond
examples. A subset of these examples are automatically imported into the documentation,
making it easy for users to contribute to the docs without learning Git and Texinfo.

7.2 Adding and editing snippets

General guidelines

When you create (or find!) a nice snippet, if it is supported by the LilyPond version running on
the LSR, please add it to the LSR. Go to LSR (http://lsr.di.unimi.it/) and log in – if you
haven’t already, create an account. Follow the instructions on the website. These instructions
also explain how to modify existing snippets.

If you think the snippet is particularly informative and you think it should be included in the
documentation, tag it with “docs” and one or more other categories, or ask on the development
list for somebody who has editing permissions to do it .

Please make sure that the lilypond code follows the guidelines in Section 5.4.4 [LilyPond
formatting], page 63.

If a new snippet created for documentation purposes compiles with LilyPond version currently
on LSR, it should be added to LSR, and a reference to the snippet should be added to the
documentation. Please ask a documentation editor to add a reference to it in an appropriate
place in the docs. (Note – it should appear in the snippets document automatically, once it has
been imported into git and built. See Section 7.4 [LSR to Git], page 92.

If the new snippet uses new features that are not available in the current LSR version, the
snippet should be added to Documentation/snippets/new and a reference should be added to
the manual.

Snippets created or updated in Documentation/snippets/new should be copied to
Documentation/snippets by invoking at top of the source tree

scripts/auxiliar/makelsr.py

Be sure that make doc runs successfully before submitting a patch, to prevent breaking
compilation.

Formatting snippets in Documentation/snippets/new

When adding a file to this directory, please start the file with

\version "2.x.y"

\header {

% Use existing LSR tags other than 'docs'; see makelsr.py for

% the list of tags used to sort snippets. E.g.:

lsrtags = "rhythms,expressive-marks"

% This texidoc string will be formatted by Texinfo

texidoc = "

This code demonstrates ...

"

% Please put doctitle last so that the '% begin verbatim'

% mark will be added correctly by makelsr.py.

doctitle = "Snippet title"

}

http://lsr.di.unimi.it/
http://lsr.di.unimi.it/
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and name the file snippet-title.ly.

Please ensure that the version number you use at the top of the example is the minimum version
that the file will compile with: for example, if the LSR is currently at 2.14.2 and your example
requires 2.15.30, but the current development version of lilypond is 2.17.5, put \version

"2.15.30" in the example.

Please also pay particular attention to the lines beginning lsrtags = and doctitle =. The
tags must match tags used in the documentation, and the doctitle must match the filename.

7.3 Approving snippets

The main task of LSR editors is approving snippets. To find a list of unapproved snippets, log
into LSR (http://lsr.di.unimi.it/) and select “No” from the dropdown menu to the right
of the word “Approved” at the bottom of the interface, then click “Enable filter”.

Check each snippet:

1. Does the snippet make sense and does what the author claims that it does? If you think
the snippet is particularly helpful, add the “docs” tag and at least one other tag.

2. If the snippet is tagged with “docs”, check to see if it matches our guidelines for Section 5.4.4
[LilyPond formatting], page 63.

Also, snippets tagged with “docs” should not be explaining (replicating) existing material
in the docs. They should not refer to the docs; the docs should refer to them.

3. If the snippet uses scheme, check that everything looks good and there are no security risks.
☛ ✟

Note: Somebody could sneak a #'(system "rm -rf /") command
into our source tree if you do not do this! Take this step VERY
SERIOUSLY.
✡ ✠

4. If all is well, check the box labelled “approved” and save the snippet.

7.4 LSR to Git

Introduction

Snippets used in the documentation are in $LILYPOND_GIT/Documentation/snippets. This
directory contains a complete set of the snippets in the LSR which are tagged with ’docs’.
The exact method for getting them there is described below, but in essence they come from
downloading a tarball from the LSR and importing into the directory using the makelsr script.

Any snippets which are too bleeding edge to run on the LSR (which uses a stable develop-
ment version) are put into $LILYPOND_GIT/Documentation/snippets/new. Once the LSR has
been upgraded so that these will run, then they are transferred to the LSR and deleted from
/snippets/new.

’Git’ is the shorthand name for the Git repository that contains all the development code.
For further information on setting this up see, Chapter 3 [Working with source code], page 14.
An alternative to setting up a Git repository for people wanting to do LSR work is to get the
source code from http://lilypond.org/website/development.html.

Importing the LSR to Git

1. Make sure that convert-ly script and the lilypond binary are a bleeding edge version –
the latest release or even better, a fresh snapshot from Git master, with the environment
variable LILYPOND_BUILD_DIR correctly set up, see Section 14.2 [Environment variables],
page 170.

http://lsr.di.unimi.it/
http://lilypond.org/website/development.html
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2. Start by creating a list of updated snippets from your local repository. From the top source
directory, run:

scripts/auxiliar/makelsr.py

Commit the changes and make a patch. Check the patch has nothing other than minor
changes. If all is good and you’re confident in what you’ve done, this can be pushed directly
to staging.

3. Next, download the updated snippets and run makelsr.py against them. From the top
source directory, run:

wget http://lsr.di.unimi.it/download/lsr-snippets-docs-`date +%F`.tar.gz

tar -xzf lsr-snippets-docs-`date +%F`.tar.gz

make -C $LILYPOND_BUILD_DIR

scripts/auxiliar/makelsr.py lsr-snippets-docs-`date +%F`

where date +%F gives the current date in format YYYY-MM-DD (the snippets archive is
usually generated around 03:50 CET, you may want to use date -d yesterday +%F instead,
depending on your time zone and the time you run this commands sequence). make is
included in this sequence so that makelsr can run lilypond and convert-ly versions that
match current source tree; you can select different binaries if desired or needed, to see
options for this do

scripts/auxiliar/makelsr.py --help

4. Follow the instructions printed on the console to manually check for unsafe files. These are:

Unsafe files printed in lsr-unsafe.txt: CHECK MANUALLY!

git add Documentation/snippets/*.ly

xargs git diff HEAD < lsr-unsafe.txt

First, it’s important to check for any added files and add them to the files git is tracking.
Run git status and look carefully to see if files have been added. If so, add them with
git add.

As the console says, makelsr creates a list of possibly unsafe files in lsr-unsafe.txt by
running lilypond against each snippet using the -dsafe switch. This list can be quite
long. However, by using the command xargs git diff HEAD < lsr-unsafe.txt git will
take that list and check whether any of the snippets are different from the snippet already
in master. If any is different it must be checked manually VERY CAREFULLY.

☛ ✟

Note: Somebody could sneak a #'(system "rm -rf /") command
into our source tree if you do not do this! Take this step VERY
SERIOUSLY.
✡ ✠

If there is any doubt about any of the files, you are strongly advised to run a review on
Rietveld.

5. If a Review is not needed, commit the changes and push to staging.

Note that whenever there is a snippet in Documentation/snippets/new and another from
the LSR with the same file name, makelsr.py will overwrite the LSR version with the one from
Documentation/snippets/new.

7.5 Fixing snippets in LilyPond sources

If some snippet from Documentation/snippets causes the documentation compilation to fail,
the following steps should be followed to fix it reliably.

1. Look up the snippet filename foo.ly in the error output or log, then fix the file
Documentation/snippets/foo.ly to make the documentation build successfully.



Chapter 7: LSR work 94

2. Determine where it comes from by looking at its first two lines, e.g. run

head -2 Documentation/snippets/foo.ly

3. If the snippet comes from the LSR, also apply the fix to the snippet in the LSR and send
a notification email to an LSR editor with CC to the development list – see Section 7.2
[Adding and editing snippets], page 91. The failure may sometimes not be caused by
the snippet in LSR but by the syntax conversion made by convert-ly; in this case, try
to fix convert-ly or report the problem on the development list, then run makelsr.py

again, see Section 7.4 [LSR to Git], page 92. In some cases, when some features has been
introduced or vastly changed so it requires (or takes significant advantage of) important
changes in the snippet, it is simpler and recommended to write a new version of the snippet
in Documentation/snippets/new, then run makelsr.py.

4. If the snippet comes from Documentation/snippets/new, apply the fix in
Documentation/snippets/new/foo.ly, then run makelsr.py without argument from top
of the source tree:

scripts/auxiliar/makelsr.py

Then, inspect Documentation/snippets/foo.ly to check that the fix has been well prop-
agated.

If the build failure was caused by a translation string, you may have to fix some
Documentation/lang/texidocs/foo.texidoc instead; in case the build failure comes only
from translation strings, it is not needed to run makelsr.py.

5. When you’ve done, commit your changes to Git and ensure they’re pushed to the correct
branch.

7.6 Renaming a snippet

Due to the potential duality of snippets (i.e. they may exist both in the LSR database, and in
Documentation/snippets/new/), this process is a bit more involved than we might like.

1. Send an email LSR editor, requesting the renaming.

2. The LSR editor does the renaming (or debates the topic with you), then warns the LSR-
to-git person (wanted: better title) about the renaming.

3. LSR-to-git person does his normal job, but then also renames any copies of the snippets in
Documentation/snippets/new/, and any instances of the snippet name in the documen-
tation.

git grep is highly recommended for this task.

7.7 Updating the LSR to a new version

To update the LSR, perform the following steps:

1. Start by emailing the LSR maintainer, Sebastiano, and liaising with him to ensure that
updating the snippets is synchronised with updating the binary running the LSR.

2. Download the latest snippet tarball from http://lsr.di.unimi.it/download/ and
extract it. The relevant files can be found in the all subdirectory. Make sure your shell
is using an English language version, for example LANG=en_US, then run convert-ly on all
the files. Use the command-line option --to=version to ensure the snippets are updated
to the correct stable version.

3. Make sure that you are using convert-ly from the latest available release to gain best
advantage from the latest converting-rules-updates.

For example:

• LSR-version: 2.12.2

http://lsr.di.unimi.it/download/
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• intended LSR-update to 2.14.2

• latest release 2.15.30

Use convert-ly from 2.15.30 and the following terminal command for all files:

convert-ly -e -t2.14.2 *.ly

4. There might be no conversion rule for some old commands. To make an initial check
for possible problems you can run the script at the end of this list on a copy of the all

subdirectory.

5. Copy relevant snippets (i.e. snippets whose version is equal to or less than the new version
of LilyPond running on the LSR) from Documentation/snippets/new/ into the set of files
to be used to make the tarball. Make sure you only choose snippets which are already
present in the LSR, since the LSR software isn’t able to create new snippets this way. If
you don’t have a Git repository for LilyPond, you’ll find these snippets in the source-tarball
on http://lilypond.org/website/development.html. Don’t rename any files at this
stage.

6. Verify that all files compile with the new version of LilyPond, ideally without any warnings
or errors. To ease the process, you may use the shell script that appears after this list.

Due to the workload involved, we do not require that you verify that all snippets produce
the expected output. If you happen to notice any such snippets and can fix them, great;
but as long as all snippets compile, don’t delay this step due to some weird output. If a
snippet is not compiling, update it manually. If it’s not possible, delete it for now.

7. Remove all headers and version-statements from the files. Phil Holmes has a python script
that will do this and which needs testing. Please ask him for a copy if you wish to do this.

8. Create a tarball and send it back to Sebastiano. Don’t forget to tell him about any deletions.

9. Use the LSR web interface to change any descriptions you want to. Changing the titles of
snippets is a bit fraught, since this also changes the filenames. Only do this as a last resort.

10. Use the LSR web interface to add the other snippets from Documentation/snippets/new/

which compile with the new LilyPond version of the LSR. Ensure that they are correctly
tagged, including the tag docs and that they are approved.

11. When LSR has been updated, wait a day for the tarball to update, then download another
snippet tarball. Verify that the relevant snippets from Documentation/snippets/new/ are
now included, then delete those snippets from Documentation/snippets/new/.

12. Commit all the changes. Don’t forget to add new files to the git repository with git add.
Run make, make doc and make test to ensure the changes don’t break the build. Any
snippets that have had their file name changed or have been deleted could break the build,
and these will need correcting step by step.

Below is a shell script to run LilyPond on all .ly files in a directory. If the script is run
with a -s parameter, it runs silently except for reporting failed files. If run with -c it also runs
convert-ly prior to running LilyPond.

#!/bin/bash

while getopts sc opt; do

case $opt in

s)

silent=true

;;

c)

convert=true

;;

esac

done

param=$ if [ $silent ]; then

http://lilypond.org/website/development.html
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param=${param:3}

fi

if [ $convert ]; then

param=${param:3}

fi

filter=${param:-"*.ly"}

for LILYFILE in $filter

do

STEM=$(basename "$LILYFILE" .ly)

if [ $convert ]; then

if [ $silent ]; then

$LILYPOND_BUILD_DIR/out/bin/convert-ly -e "$LILYFILE" >& "$STEM".con.txt

else

$LILYPOND_BUILD_DIR/out/bin/convert-ly -e "$LILYFILE"

fi

fi

if [ ! $silent ]; then

echo "running $LILYFILE..."

fi

$LILYPOND_BUILD_DIR/out/bin/lilypond --format=png "$LILYFILE" >& "$STEM".txt

RetVal=$?

if [ $RetVal -gt 0 ]; then

echo "$LILYFILE failed"

fi

done

Output from LilyPond is in filename.txt and convert-ly in filename.con.txt.

Elu
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8 Issues

This chapter deals with defects, feature requests, and miscellaneous development tasks.

8.1 Introduction to issues
☛ ✟

Note: All the tasks in this chapter require no programming skills and
can be done by anyone with a web browser, an email client and the
ability to run LilyPond.
✡ ✠

The term ‘issues’ refers not just to software bugs but also includes feature requests, docu-
mentation additions and corrections as well as any other general code ‘TODOs’ that need to be
kept track of.

8.2 The Bug Squad

To help keep track and organize all issues are a group of tireless volunteers collectively known as
the Bug Squad. Composed mainly of non-programmers, the Bug Squad’s responsibilities include:

• Monitoring the LilyPond Bugs mailing list looking for any issues reported by other users
ensuring that they are accurate and contain enough information for the developers to work
with, preferably with Section “Tiny examples” in General Information and if applicable,
screenshots.

• Adding new issues to the issue tracker or updating existing issues with new information.

• Verifying issues in the issue tracker that have been marked as ‘fixed’; making sure either
that the fix works or (in the case of Documentation for example) has at least been commited
to the code base.

The Section 14.3 [Meisters], page 170, also helps check the current Chapter 9 [Regression
tests], page 105, and highlights any significant changes (or problems) since the previous LilyPond
release.

If you would like to be part of the Bug Squad, please contact the Section 14.3 [Meisters],
page 170.

8.2.1 Bug Squad setup

We highly recommend that you configure your email client to use some kind of sorting and
filtering as this will significantly reduce and simplify your workload. Suggested email folder
names are mentioned below to work when sorted alphabetically.

1. Read every section of the Chapter 8 [Issues], page 97, chapter in this guide.

2. Subscribe your email account to bug-lilypond. See https://lists.gnu.org/mailman/

listinfo/bug-lilypond.

3. Send your email address to the Section 14.3 [Meisters], page 170.

4. Create your own Sourceforge login (required for the Allura issue tracker):

• Go to https://sourceforge.net/p/testlilyissues/issues/

• Click on ’Join’ in the top-right corner.

• Fill in your details as required and click the Register button to complete the registra-
tion.

5. Send your Sourceforge username (not your email address) to bug-lilypond@gnu.org asking
to be given appropriate permissions to either create, edit and comment on tracker issues.

https://lists.gnu.org/mailman/listinfo/bug-lilypond
https://lists.gnu.org/mailman/listinfo/bug-lilypond
https://sourceforge.net/p/testlilyissues/issues/
mailto:bug-lilypond@gnu.org
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6. Configure your email client:

• Any email sent with your address in the To: or CC: fields should be configured to go
into a bug-answers folder.

• Any email either From: or CC: to,

testlilyissues-auto@lists.sourceforge.net

should be configured to go into a bug-ignore folder or, alternately, configure your email
client to delete these automatically. You do not need to read mails in the bug-ignore

folder. If you are curious (and have time) then read them, but they are not necessary
for Bug Squad work.

• Any email sent To: or CC: to,

bug-lilypond

should be configured to go into a bug-current folder.

8.2.2 Bug Squad checklists

When you do Bug Squad work, start at the top of this page and work your way down. Stop
when you’ve done 20 minutes.

Please use the email sorting described in Section 8.2.1 [Bug Squad setup], page 97. This
means that (as Bug Squad members) you will only ever respond to emails sent or CC’d to the
bug-lilypond mailing list.

Emails to you personally

You are not expected to work on Bug Squad matters outside of your 20 minutes, but sometimes
a confused user will send a bug report (or an update to a report) to you personally. If that
happens, please forward such emails to the bug-lilypond list so that the currently-active Bug
Squad member(s) can handle the message.

Daily schedule as of July 2015

Monday: Federico Bruni

Tuesday: Graham Percival

Wednesday: Simon Albrecht

Thursday: Colin Campbell

Friday: Ralph Palmer

Saturday: Colin Campbell

Sunday: Graham Percival

Emails to bug-answers

Some of these emails will be comments on issues that you added to the tracker.

If they are asking for more information, give the additional information.

• If the email says that the issue was classified in some other manner, read the rationale given
and take that into account for the next issue you add.

• Otherwise, move them to your bug-ignore folder.

Some of these emails will be discussions about Bug Squad work; read those.

Emails to bug-current

Dealing with these emails is your main task. Your job is to get rid of these emails in the first
method which is applicable:

1. If the email has already been handled by a Bug Squad member (i.e. check to see who else
has replied to it), delete it.
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2. If the email is a question about how to use LilyPond, reply with this response:

For questions about how to use LilyPond, please read our

documentation available from:

http://lilypond.org/website/manuals.html

or ask the lilypond-user mailing list.

3. If the email mentions “the latest git”, or any version number that has not yet been officially
released, forward it to lilypond-devel.

4. If a bug report is not in the form of a Tiny example, direct the user to resubmit the report
with this response:

I'm sorry, but due to our limited resources for handling bugs, we

can only accept reports in the form of Tiny examples. Please see

step 2 in our bug reporting guidelines:

http://lilypond.org/website/bug-reports.html

5. If anything is unclear, ask the user for more information.

How does the graphical output differ from what the user expected? What version of lilypond
was used (if not given) and operating system (if this is a suspected cause of the problem)?
In short, if you cannot understand what the problem is, ask the user to explain more. It is
the user’s responsibility to explain the problem, not your responsibility to understand it.

6. If the behavior is expected, the user should be told to read the documentation:

I believe that this is the expected behaviour -- please read our

documentation about this topic. If you think that it really is a

mistake, please explain in more detail. If you think that the

docs are unclear, please suggest an improvement as described by

\Simple tasks -- Documentation" on:

http://lilypond.org/website/help-us.html

7. If the issue already exists in the tracker, send an email to that effect:

This issue has already been reported; you can follow the

discussion and be notified about fixes here:

(copy+paste the google code issue URL)

8. Accept the report as described in Section 8.4 [Adding issues to the tracker], page 102.

All emails should be CC’d to the bug-lilypond list so that other Bug Squad members know
that you have processed the email.

☛ ✟

Note: There is no option for “ignore the bug report” – if you cannot
find a reason to reject the report, you must accept it.
✡ ✠

Regular maintenance

After every release (both stable and unstable):

• Issues to verify: go to

https://sourceforge.net/p/testlilyissues/issues/search/?q=status%3AFixed

(You can also generate this list by selecting the “Open (Fixed)” button down the left-hand
frame)

You should see a list of Issues that have been marked as ’Fixed’ by a developer. If the
developer has done their job properly, the Issue should have the “Labels” field filled in with
“Fixed x y z”, where X is the major version, y the minor version and z the current release.

Fixed_2_19_39

http://lilypond.org/website/manuals.html
http://lilypond.org/website/bug-reports.html
http://lilypond.org/website/help-us.html
https://sourceforge.net/p/testlilyissues/issues/search/?q=status%3AFixed
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This will help you work out which you can verify - do not verify any Issues where the
claimed fixed build is not yet released. Work your way through these as follows:

If the Issue refers to a bug, try to reproduce the bug with the latest officially released version
(not one you’ve built yourself from source); if the bug is no longer there, mark the issue
“Verified” (i.e. “the fix has been verified to work”).

Quite a few of these will be issues tracking patches. You do not have to prove these patches
work - simply that they have been pushed into the code base. The developer should have
put information similar to “Pushed as as d8fce1e1ea2aca1a82e25e47805aef0f70f511b9” in
the tracker. The long list of letters and numbers is called the “committish”. Providing you
can find this at the git tracker:

http://git.savannah.gnu.org/gitweb/?p=lilypond.git

then you should mark the issue as verified. A quick way of finding these is to enter the
committish at the following address:

http://philholmes.net/lilypond/git/

The Issue tracker also requires that any issues labelled as “Duplicate” are also verified.
Check that the linked issue is a duplicate and verify the issue.

A few (approximately 10%) of the fixed issues relate to the build system or fundamental
architecture changes; there is no way for you to verify these. Leave those issues alone;
somebody else will handle them.

• The official regression test comparison is online at:

http://lilypond.org/test/

If anything has changed suspiciously, ask if it was deliberate. If the text output from
LilyPond (the logfile) changes, the differences will be displayed with a + before text added
to the logfile and - before any text removed from the logfile. This may or may not be
suspicious.

There is one test designed to produce output every time the regtests are created.
test-output-distance.ly creates randomly spaced notes and will always have different
output if the regtest checker is working.

More information is available from in Section 9.2 [Precompiled regression tests], page 105.

• Check for any incorrectly-classified items in the tracker. This generally just means looking
at the grid to see any items without a Type.

8.3 Issue classification

The Bug Squad should classify issues according to the guidelines given by developers. Every
issue should have a Status and Type; the other fields are optional.

Status (mandatory)

Open issues:

• New: the item was added by a non-member, despite numerous warnings not to do this.
Should be reviewed by a member of the Bug Squad.

• Accepted: the Bug Squad added it, or reviewed the item.

• Started: a contributor is working on a fix. Owner should change to be this contributor.

Closed issues:

• Invalid: issue should not have been added in the current state.

• Duplicate: issue already exists in the tracker.

http://git.savannah.gnu.org/gitweb/?p=lilypond.git
http://philholmes.net/lilypond/git/
http://lilypond.org/test/
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• Fixed: a contributor claims to have fixed the bug. The Bug Squad should check the fix
with the next official binary release (not by compiling the source from git). Owner should
be set to that contributor.

• Verified: Bug Squad has confirmed that the issue is closed. This means that nobody should
ever need look at the report again – if there is any information in the issue that should be
kept, open a new issue for that info.

Owner (optional)

Newly-added issues should have no owner. When a contributor indicates that he has Started or
Fixed an item, he should become the owner.

Type (mandatory)

The issue’s Type should be the first relevant item in this list.

• Type-Critical: normally a regression against the current stable version or the previous stable
version. Alternatively, a regression against a fix developed for the current version. This
does not apply where the “regression” occurred because a feature was removed deliberately
- this is not a bug.

Currently, only Critical items will block a stable release.

• Type-Maintainability: hinders future development.

• Type-Crash: any input which produces a crash.

• Type-Ugly: overlapping or other ugly notation in graphical output.

• Type-Defect: a problem in the core program. (the lilypond binary, scm files, fonts, etc).

• Type-Documentation: inaccurate, missing, confusing, or desired additional info. Must be
fixable by editing a texinfo, ly, or scm file.

• Type-Build: problem or desired features in the build system. This includes the makefiles,
stepmake, python scripts, and GUB.

• Type-Scripts: problem or desired feature in the non-build-system scripts. Mostly used for
convert-ly, lilypond-book, etc.

• Type-Enhancement: a feature request for the core program. The distinction between en-
hancement and defect isn’t extremely clear; when in doubt, mark it as enhancement.

• Type-Patch: tracking a patch on Rietveld. Bug squad should not need to use this label.

• Type-Other: anything else.

Opsys (optional)

Issues that only affect specific operating systems.

Patch label (optional)

Normal Bug Squad members should not add or modify Patch issues except to verify them; for
all other Patch work, leave them to the Patch Meister.

• Patch-new: the patch has not been checked for “obvious” mistakes. When in doubt, use
this tag.

• Patch-review: the patch has no “obvious” mistakes (as checked by the Patch Meister), and
is ready for review from main developers.

Developers with git push ability can use this category, skipping over patch-new.

• Patch-needs work: a developer has some concerns about the patch. This does not neces-
sarily mean that the patch must be changed; in some cases, the developer’s concerns can
be resolved simply by discussion the situation or providing notation examples.
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If the patch is updated, the category should be changed to patch-new (for normal contrib-
utors) or patch-review (for developers who are very confident about their patch).

• Patch-countdown: final call for any patch problems

• Patch-push: patch has passed the countdown and should be pushed.

• Patch-abandoned: the author has not responded to review comments for a few months.

Other items (optional)

Other labels:

• Regression: it used to work intentionally in the current stable release or the previous stable
release. If the earlier output was accidental (i.e. we didn’t try to stop a collision, but it just
so happened that two grobs didn’t collide), then breaking it does not count as a regression.

To help decide whether the change is a regression, please adopt the following process:

1. Are you certain the change is OK? If so, do nothing.

2. Are you certain that the change is bad? Add it to the tracker as a regression.

3. If you’re not certain either way, add it to the tracker as a regression but be aware that
it may be recategorised or marked invalid.

In particular, anything that breaks a regression test is a regression.

• Frog: the fix is believed to be suitable for a new contributor (does not require a great deal
of knowledge about LilyPond). The issue should also have an estimated time in a comment.

• Bounty: somebody is willing to pay for the fix. Only add this tag if somebody has offered
an exact figure in US dollars or euros.

• Warning: graphical output is fine, but lilypond prints a false/misleading warning message.
Alternately, a warning should be printed (such as a bar line error), but was not. Also applies
to warnings when compiling the source code or generating documentation.

• Security: security risk.

• Performance: performance issue.

If you particularly want to add a label not in the list, go ahead, but this is not recommended,
except when an issue is marked as fixed. In this case it should be labeled Fixed mm MM ss,
where mm is major version, MM minor version and ss current release.

8.4 Adding issues to the tracker
☛ ✟

Note: This should only be done by the Bug Squad or experienced de-
velopers. Normal users should not do this; instead, they should follow
the guidelines for Section “Bug reports” in General Information.
✡ ✠

In order to assign labels to issues, Bug Squad members should log in to their google account
before adding an item.

1. Check if the issue falls into any previous category given on the relevant checklists in
Section 8.2.2 [Bug Squad checklists], page 98. If in doubt, add a new issue for a report.
We would prefer to have some incorrectly-added issues rather than lose information that
should have been added.

2. Add the issue and classify it according to the guidelines in Section 8.3 [Issue classification],
page 100. In particular, the item should have Status and Type- labels.

Include output with the first applicable method:

• If the issue has a notation example which fits in one system, generate a small
bug.preview.png file with:

lilypond -dpreview bug.ly



Chapter 8: Issues 103

• If the issue has an example which requires more than one system (i.e. a spacing bug),
generate a bug.png file with:

lilypond --png bug.ly

• If the issue requires one or two pages of output, then generate a bug.png file with the
normal:

lilypond --png bug.ly

• Images created as bug.png may be trimmed to a minimum size by using the
trimtagline.sh script, which can be found at

https://raw.github.com/gperciva/lilypond-extra/master/bug-squad/trimtagline.sh

trimtagline.sh bug.ly

• If the issue cannot be shown with less than three pages, then generate a bug.pdf file
with:

lilypond --pdf bug.ly

Note that this is likely to be extremely rare; most bugs should fit into the first two
categories above.

3. After adding the issue, please send a response email to the same group(s) that the initial
patch was sent to. If the initial email was sent to multiple mailing lists (such as both user

and bugs), then reply to all those mailing lists as well. The email should contain a link to
the issue you just added.

8.5 Patch handling
☛ ✟

Note: This is not a Bug Squad responsibility; we have a separate person
handling this task.
✡ ✠

For contributors/developers: follow the steps in Section 3.3.5 [Patches], page 26, and
Section 3.4.10 [Pushing to staging], page 35.

8.6 Summary of project status

Project overview

Project activity

https://sourceforge.net/projects/testlilyissues/

Hindering development

These issues stop or slow development work:

https://sourceforge.net/p/testlilyissues/issues/search/?q=status:Accepted%20AND%20_type:Maintainability

Easy tasks

Issues tagged with Frog indicates a task suitable for a relatively new contributor. The time given
is a quick (and probably inaccurate) estimate of the time required for somebody who is familiar
with material in this manual, but does not know anything else about LilyPond development.

https://sourceforge.net/p/testlilyissues/issues/search/?q=status:Accepted%20AND%20labels:Frog

Patches currently in the Patch Review cycle

Overview

http://philholmes.net/lilypond/allura/

https://raw.github.com/gperciva/lilypond-extra/master/bug-squad/trimtagline.sh
https://sourceforge.net/projects/testlilyissues/
https://sourceforge.net/p/testlilyissues/issues/search/?q=status:Accepted%20AND%20_type:Maintainability
https://sourceforge.net/p/testlilyissues/issues/search/?q=status:Accepted%20AND%20labels:Frog
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New patches
https://sourceforge.net/p/testlilyissues/issues/search/?q=status%3AStarted+AND+_patch%3Anew

Patches under Review
https://sourceforge.net/p/testlilyissues/issues/search/?q=status%3AStarted+AND+_patch%3Areview

Patches on final Countdown
https://sourceforge.net/p/testlilyissues/issues/search/?q=status%3AStarted+AND+_patch%3Acountdown

Patches that can be pushed
https://sourceforge.net/p/testlilyissues/issues/search/?q=status%3AStarted+AND+_patch%3Apush

https://sourceforge.net/p/testlilyissues/issues/search/?q=status%3AStarted+AND+_patch%3Anew
https://sourceforge.net/p/testlilyissues/issues/search/?q=status%3AStarted+AND+_patch%3Areview
https://sourceforge.net/p/testlilyissues/issues/search/?q=status%3AStarted+AND+_patch%3Acountdown
https://sourceforge.net/p/testlilyissues/issues/search/?q=status%3AStarted+AND+_patch%3Apush
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9 Regression tests

9.1 Introduction to regression tests

LilyPond has a complete suite of regression tests that are used to ensure that changes to the
code do not break existing behavior. These regression tests comprise small LilyPond snippets
that test the functionality of each part of LilyPond.

Regression tests are added when new functionality is added to LilyPond. We do not yet have
a policy on when it is appropriate to add or modify a regtest when bugs are fixed. Individual
developers should use their best judgement until this is clarified during the Section 14.6 [Grand
Organization Project (GOP)], page 175.

The regression tests are compiled using special make targets. There are three primary uses
for the regression tests. First, successful completion of the regression tests means that LilyPond
has been properly built. Second, the output of the regression tests can be manually checked to
ensure that the graphical output matches the description of the intended output. Third, the
regression test output from two different versions of LilyPond can be automatically compared
to identify any differences. These differences should then be manually checked to ensure that
the differences are intended.

Regression tests (“regtests”) are available in precompiled form as part of the documentation.
Regtests can also be compiled on any machine that has a properly configured LilyPond build
system.

9.2 Precompiled regression tests

Regression test output

As part of the release process, the regression tests are run for every LilyPond release. Full
regression test output is available for every stable version and the most recent development
version.

Regression test output is available in HTML and PDF format. Links to the regression test
output are available at the developer’s resources page for the version of interest.

The latest stable version of the regtests is found at:

http://lilypond.org/doc/stable/input/regression/collated-files.html

The latest development version of the regtests is found at:

http://lilypond.org/doc/latest/input/regression/collated-files.html

Regression test comparison

Each time a new version is released, the regtests are compiled and the output is automatically
compared with the output of the previous release. The result of these comparisons is archived
online:

http://lilypond.org/test/

Checking these pages is a very important task for the LilyPond project. You are invited to
report anything that looks broken, or any case where the output quality is not on par with the
previous release, as described in Section “Bug reports” in General Information.

☛ ✟

Note: The special regression test test-output-distance.ly will al-
ways show up as a regression. This test changes each time it is run, and
serves to verify that the regression tests have, in fact, run.
✡ ✠

http://lilypond.org/doc/stable/input/regression/collated-files.html
http://lilypond.org/doc/latest/input/regression/collated-files.html
http://lilypond.org/test/
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What to look for

The test comparison shows all of the changes that occurred between the current release and the
prior release. Each test that has a significant (noticeable) difference in output is displayed, with
the old version on the left and the new version on the right.

Some of the small changes can be ignored (slightly different slur shapes, small variations in
note spacing), but this is not always the case: sometimes even the smallest change means that
something is wrong. To help in distinguishing these cases, we use bigger staff size when small
differences matter.

Staff size 30 generally means "pay extra attention to details". Staff size 40 (two times bigger
than default size) or more means that the regtest is about the details.

Staff size smaller than default doesn’t mean anything.

Regression tests whose output is the same for both versions are not shown in the test com-
parison.

• Images: green blurs in the new version show the approximate location of elements in the
old version.

There are often minor adjustments in spacing which do not indicate any problem.

• Log files: show the difference in command-line output.

The main thing to examine are any changes in page counts – if a file used to fit on 1 page
but now requires 4 or 5 pages, something is suspicious!

• Profile files: give information about TODO? I don’t know what they’re for. Apparently
they give some information about CPU usage. If you got tons of changes in cell counts, this
probably means that you compiled make test-baseline with a different amount of CPU
threads than make check. Try redoing tests from scratch with the same number of threads
each time – see Section 4.5.2 [Saving time with the -j option], page 52.

☛ ✟

Note: The automatic comparison of the regtests checks the LilyPond
bounding boxes. This means that Ghostscript changes and changes in
lyrics or text are not found.
✡ ✠

9.3 Compiling regression tests

Developers may wish to see the output of the complete regression test suite for the current
version of the source repository between releases. Current source code is available; see Chapter 3
[Working with source code], page 14.

For regression testing ../configure should be run with the --disable-optimising option.
Then you will need to build the LilyPond binary; see Section 4.5 [Compiling LilyPond], page 51.

Uninstalling the previous LilyPond version is not necessary, nor is running make install,
since the tests will automatically be compiled with the LilyPond binary you have just built in
your source directory.

From this point, the regtests are compiled with:

make test

If you have a multi-core machine you may want to use the -j option and CPU COUNT

variable, as described in [Saving time with CPU COUNT], page 54. For a quad-core processor
the complete command would be:

make -j5 CPU_COUNT=5 test

The regtest output will then be available in input/regression/out-test.
input/regression/out-test/collated-examples.html contains a listing of all the regression
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tests that were run, but none of the images are included. Individual images are also available
in this directory.

The primary use of ‘make test’ is to verify that the regression tests all run without error. The
regression test page that is part of the documentation is created only when the documentation is
built, as described in Section 4.6.2 [Generating documentation], page 53. Note that building the
documentation requires more installed components than building the source code, as described
in Section 4.2.3 [Requirements for building documentation], page 48.

9.4 Regtest comparison

Before modified code is committed to master (via staging), a regression test comparison must
be completed to ensure that the changes have not caused problems with previously working
code. The comparison is made automatically upon compiling the regression test suite twice.

1. Run make with current git master without any of your changes.

2. Before making changes to the code, establish a baseline for the comparison by going to the
$LILYPOND_GIT/build/ directory and running:

make test-baseline

3. Make your changes, or apply the patch(es) to consider.

4. Compile the source with ‘make’ as usual.

5. Check for unintentional changes to the regtests:

make check

After this has finished, a regression test comparison will be available (relative to the current
build/ directory) at:

out/test-results/index.html

For each regression test that differs between the baseline and the changed code, a regression
test entry will be displayed. Ideally, the only changes would be the changes that you were
working on. If regressions are introduced, they must be fixed before committing the code.

☛ ✟

Note: The special regression test test-output-distance.ly will
always show up as a regression. This test changes each time it is
run, and serves to verify that the regression tests have, in fact, run.
✡ ✠

6. If you are happy with the results, then stop now.

If you want to continue programming, then make any additional code changes, and continue.

7. Compile the source with ‘make’ as usual.

8. To re-check files that differed between the initial ‘make test-baseline’ and your post-
changes ‘make check’, run:

make test-redo

This updates the regression list at out/test-results/index.html. It does not redo
test-output-distance.ly.

9. When all regressions have been resolved, the output list will be empty.

10. Once all regressions have been resolved, a final check should be completed by running:

make test-clean

make check

This cleans the results of the previous ‘make check’, then does the automatic regression
comparison again.

Advanced note: Once a test baseline has been established, there is no need to run it
again unless git master changed. In other words, if you work with several branches
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and want to do regtests comparison for all of them, you can make test-baseline

with git master, checkout some branch, make and make check it, then switch to
another branch, make test-clean, make and make check it without doing make

test-baseline again.

9.5 Pixel-based regtest comparison

As an alternative to the make test method for regtest checking (which relies upon .signature

files created by a LilyPond run and which describe the placing of grobs) there is a script which
compares the output of two LilyPond versions pixel-by-pixel. To use this, start by checking out
the version of LilyPond you want to use as a baseline, and run make. Then, do the following:

cd $LILYPOND_GIT/scripts/auxiliar/

./make-regtest-pngs.sh -j9 -o

The -j9 option tells the script to use 9 CPUs to create the images - change this to your own
CPU count+1. -o means this is the "old" version. This will create images of all the regtests in

$LILYPOND_BUILD_DIR/out-png-check/old-regtest-results/

Now checkout the version you want to compare with the baseline. Run make again to recreate
the LilyPond binary. Then, do the following:

cd $LILYPOND_GIT/scripts/auxiliar/

./make-regtest-pngs.sh -j9 -n

The -n option tells the script to make a "new" version of the images. They are created in

$LILYPOND_BUILD_DIR/out-png-check/new-regtest-results/

Once the new images have been created, the script compares the old images with the new
ones pixel-by-pixel and prints a list of the different images to the terminal, together with a count
of how many differences were found. The results of the checks are in

$LILYPOND_BUILD_DIR/out-png-check/regtest-diffs/

To check for differences, browse that directory with an image viewer. Differences are shown
in red. Be aware that some images with complex fonts or spacing annotations always display a
few minor differences. These can safely be ignored.

9.6 Finding the cause of a regression

Git has special functionality to help tracking down the exact commit which causes a problem.
See the git manual page for git bisect. This is a job that non-programmers can do, although it
requires familiarity with git, ability to compile LilyPond, and generally a fair amount of technical
knowledge. A brief summary is given below, but you may need to consult other documentation
for in-depth explanations.

Even if you are not familiar with git or are not able to compile LilyPond you can still help
to narrow down the cause of a regression simply by downloading the binary releases of different
LilyPond versions and testing them for the regression. Knowing which version of LilyPond first
exhibited the regression is helpful to a developer as it shortens the git bisect procedure.

Once a problematic commit is identified, the programmers’ job is much easier. In fact, for
most regression bugs, the majority of the time is spent simply finding the problematic commit.

More information is in Chapter 9 [Regression tests], page 105.

git bisect setup

We need to set up the bisect for each problem we want to investigate.

Suppose we have an input file which compiled in version 2.13.32, but fails in version 2.13.38
and above.
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1. Begin the process:

git bisect start

2. Give it the earliest known bad tag:

git bisect bad release/2.13.38-1

(you can see tags with: git tag )

3. Give it the latest known good tag:

git bisect good release/2.13.32-1

You should now see something like:

Bisecting: 195 revisions left to test after this (roughly 8 steps)

[b17e2f3d7a5853a30f7d5a3cdc6b5079e77a3d2a] Web: Announcement

update for the new \LilyPond Report".

git bisect actual

1. Compile the source:

make

2. Test your input file:

out/bin/lilypond test.ly

3. Test results?

• Does it crash, or is the output bad? If so:

git bisect bad

• Does your input file produce good output? If so:

git bisect good

4. Once the exact problem commit has been identified, git will inform you with a message like:

6d28aebbaaab1be9961a00bf15a1ef93acb91e30 is the first bad commit

%%% ... blah blah blah ...

If there is still a range of commits, then git will automatically select a new version for you
to test. Go to step #1.

Recommendation: use two terminal windows

• One window is open to the build/ directory, and alternates between these commands:

make

out/bin/lilypond test.ly

• One window is open to the top source directory, and alternates between these commands:

git bisect good

git bisect bad

9.7 Memory and coverage tests

In addition to the graphical output of the regression tests, it is possible to test memory usage
and to determine how much of the source code has been exercised by the tests.

Memory usage

For tracking memory usage as part of this test, you will need GUILE CVS; especially the
following patch:

http://lilypond.org/vc/old/gub.darcs/patches/guile-1.9-gcstats.patch.

http://lilypond.org/vc/old/gub.darcs/patches/guile-1.9-gcstats.patch
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Code coverage

For checking the coverage of the test suite, do the following

./scripts/auxiliar/build-coverage.sh

# uncovered files, least covered first

./scripts/auxiliar/coverage.py --summary out-cov/*.cc

# consecutive uncovered lines, longest first

./scripts/auxiliar/coverage.py --uncovered out-cov/*.cc

9.8 MusicXML tests

LilyPond comes with a complete set of regtests for the MusicXML (http://www.musicxml.
org/) language. Originally developed to test ‘musicxml2ly’, these regression tests can be used
to test any MusicXML implementation.

The MusicXML regression tests are found at input/regression/musicxml/.

The output resulting from running these tests through ‘musicxml2ly’ followed by ‘lilypond’
is available in the LilyPond documentation:

http://lilypond.org/doc/latest/input/regression/musicxml/collated-files

http://www.musicxml.org/
http://www.musicxml.org/
http://lilypond.org/doc/latest/input/regression/musicxml/collated-files
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10 Programming work

10.1 Overview of LilyPond architecture

LilyPond processes the input file into graphical and musical output in a number of stages. This
process, along with the types of routines that accomplish the various stages of the process,
is described in this section. A more complete description of the LilyPond architecture and
internal program execution is found in Erik Sandberg’s master’s thesis (http://lilypond.org/
website/pdf/thesis-erik-sandberg.pdf).

The first stage of LilyPond processing is parsing. In the parsing process, music expressions in
LilyPond input format are converted to music expressions in Scheme format. In Scheme format,
a music expression is a list in tree form, with nodes that indicate the relationships between
various music events. The LilyPond parser is written in Bison.

The second stage of LilyPond processing is iterating. Iterating assigns each music event to a
context, which is the environment in which the music will be finally engraved. The context is
responsible for all further processing of the music. It is during the iteration stage that contexts
are created as necessary to ensure that every note has a Voice type context (e.g. Voice, TabVoice,
DrumVoice, CueVoice, MensuralVoice, VaticanaVoice, GregorianTranscriptionVoice), that the
Voice type contexts exist in appropriate Staff type contexts, and that parallel Staff type contexts
exist in StaffGroup type contexts. In addition, during the iteration stage each music event is
assigned a moment, or a time in the music when the event begins.

Each type of music event has an associated iterator. Iterators are defined in *-iterator.cc.
During iteration, an event’s iterator is called to deliver that music event to the appropriate
context(s).

The final stage of LilyPond processing is translation. During translation, music events are
prepared for graphical or midi output. The translation step is accomplished by the polymor-
phic base class Translator through its two derived classes: Engraver (for graphical output) and
Performer (for midi output).

http://lilypond.org/website/pdf/thesis-erik-sandberg.pdf
http://lilypond.org/website/pdf/thesis-erik-sandberg.pdf
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Translators are defined in C++ files named *-engraver.cc and *-performer.cc. Much of
the work of translating is handled by Scheme functions, which is one of the keys to LilyPond’s
exceptional flexibility.
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10.2 LilyPond programming languages

Programming in LilyPond is done in a variety of programming languages. Each language is used
for a specific purpose or purposes. This section describes the languages used and provides links
to reference manuals and tutorials for the relevant language.

10.2.1 C++

The core functionality of LilyPond is implemented in C++.

C++ is so ubiquitous that it is difficult to identify either a reference manual or a tutorial.
Programmers unfamiliar with C++ will need to spend some time to learn the language before
attempting to modify the C++ code.

The C++ code calls Scheme/GUILE through the GUILE interface, which is documented in
the GUILE Reference Manual (http://www.gnu.org/software/guile/manual/html_node/
index.html).

10.2.2 Flex

The LilyPond lexer is implemented in Flex, an implementation of the Unix lex lexical analyser
generator. Resources for Flex can be found here (http://flex.sourceforge.net/).

10.2.3 GNU Bison

The LilyPond parser is implemented in Bison, a GNU parser generator. The Bison homepage is
found at gnu.org (http://www.gnu.org/software/bison/). The manual (which includes both
a reference and tutorial) is available (http://www.gnu.org/software/bison/manual/index.
html) in a variety of formats.

10.2.4 GNU Make

GNU Make is used to control the compiling process and to build the documentation and the
website. GNU Make documentation is available at the GNU website (http://www.gnu.org/
software/make/manual/).

10.2.5 GUILE or Scheme

GUILE is the dialect of Scheme that is used as LilyPond’s extension language. Many extensions
to LilyPond are written entirely in GUILE. The GUILE Reference Manual (http://www.gnu.
org/software/guile/manual/html_node/index.html) is available online.

Structure and Interpretation of Computer Programs (http://mitpress.mit.edu/sicp/
full-text/book/book.html), a popular textbook used to teach programming in Scheme is
available in its entirety online.

An introduction to Guile/Scheme as used in LilyPond can be found in the Section “Scheme
tutorial” in Extending .

10.2.6 MetaFont

MetaFont is used to create the music fonts used by LilyPond. A MetaFont tutorial is available
at the METAFONT tutorial page (http://metafont.tutorial.free.fr/).

10.2.7 PostScript

PostScript is used to generate graphical output. A brief PostScript tutorial is available online
(http://local.wasp.uwa.edu.au/~pbourke/dataformats/postscript/). The PostScript
Language Reference (http://www.adobe.com/products/postscript/pdfs/PLRM.pdf) is
available online in PDF format.

http://www.gnu.org/software/guile/manual/html_node/index.html
http://www.gnu.org/software/guile/manual/html_node/index.html
http://flex.sourceforge.net/
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/manual/index.html
http://www.gnu.org/software/bison/manual/index.html
http://www.gnu.org/software/make/manual/
http://www.gnu.org/software/make/manual/
http://www.gnu.org/software/guile/manual/html_node/index.html
http://www.gnu.org/software/guile/manual/html_node/index.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://metafont.tutorial.free.fr/
http://local.wasp.uwa.edu.au/~pbourke/dataformats/postscript/
http://local.wasp.uwa.edu.au/~pbourke/dataformats/postscript/
http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
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10.2.8 Python

Python is used for XML2ly and is used for building the documentation and the website.

Python documentation is available at python.org (http://www.python.org/doc/).

10.2.9 Scalable Vector Graphics (SVG)

Scalable Vector Graphics (SVG) is an XML-based markup language used to generate graphical
output. A brief SVG tutorial is available online (https://www.w3schools.com/graphics/
svg_intro.asp) through W3 Schools. The World Wide Web Consortium’s SVG 1.2 Recom-
mendation (https://www.w3.org/TR/SVG/REC-SVG11-20110816.pdf) is available online in
PDF format.

10.3 Programming without compiling

Much of the development work in LilyPond takes place by changing *.ly or *.scm files. These
changes can be made without compiling LilyPond. Such changes are described in this section.

10.3.1 Modifying distribution files

Much of LilyPond is written in Scheme or LilyPond input files. These files are interpreted when
the program is run, rather than being compiled when the program is built, and are present in
all LilyPond distributions. You will find .ly files in the ly/ directory and the Scheme files in
the scm/ directory. Both Scheme files and .ly files can be modified and saved with any text
editor. It’s probably wise to make a backup copy of your files before you modify them, although
you can reinstall if the files become corrupted.

Once you’ve modified the files, you can test the changes just by running LilyPond on some
input file. It’s a good idea to create a file that demonstrates the feature you’re trying to add.
This file will eventually become a regression test and will be part of the LilyPond distribution.

10.3.2 Desired file formatting

Files that are part of the LilyPond distribution have Unix-style line endings (LF), rather than
DOS (CR+LF) or MacOS 9 and earlier (CR). Make sure you use the necessary tools to ensure
that Unix-style line endings are preserved in the patches you create.

Tab characters should not be included in files for distribution. All indentation should be
done with spaces. Most editors have settings to allow the setting of tab stops and ensuring that
no tab characters are included in the file.

Scheme files and LilyPond files should be written according to standard style guidelines.
Scheme file guidelines can be found at http://community.schemewiki.org/?scheme-style.
Following these guidelines will make your code easier to read. Both you and others that work
on your code will be glad you followed these guidelines.

For LilyPond files, you should follow the guidelines for LilyPond snippets in the documen-
tation. You can find these guidelines at Section 5.4 [Texinfo introduction and usage policy],
page 61.

10.4 Finding functions

When making changes or fixing bugs in LilyPond, one of the initial challenges is finding out
where in the code tree the functions to be modified live. With nearly 3000 files in the source
tree, trial-and-error searching is generally ineffective. This section describes a process for finding
interesting code.

http://www.python.org/doc/
https://www.w3schools.com/graphics/svg_intro.asp
https://www.w3schools.com/graphics/svg_intro.asp
https://www.w3.org/TR/SVG/REC-SVG11-20110816.pdf
https://www.w3.org/TR/SVG/REC-SVG11-20110816.pdf
http://community.schemewiki.org/?scheme-style
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10.4.1 Using the ROADMAP

The file ROADMAP is located in the main directory of the lilypond source. ROADMAP lists
all of the directories in the LilyPond source tree, along with a brief description of the kind of
files found in each directory. This can be a very helpful tool for deciding which directories to
search when looking for a function.

10.4.2 Using grep to search

Having identified a likely subdirectory to search, the grep utility can be used to search for a
function name. The format of the grep command is

grep -i functionName subdirectory/*

This command will search all the contents of the directory subdirectory/ and display every
line in any of the files that contains functionName. The -i option makes grep ignore case – this
can be very useful if you are not yet familiar with our capitalization conventions.

The most likely directories to grep for function names are scm/ for scheme files, ly/ for
lilypond input (*.ly) files, and lily/ for C++ files.

10.4.3 Using git grep to search

If you have used git to obtain the source, you have access to a powerful tool to search for
functions. The command:

git grep functionName

will search through all of the files that are present in the git repository looking for function-
Name. It also presents the results of the search using less, so the results are displayed one page
at a time.

10.4.4 Searching on the git repository at Savannah

You can also use the equivalent of git grep on the Savannah server.

• Go to http://git.sv.gnu.org/gitweb/?p=lilypond.git

• In the pulldown box that says commit, select grep.

• Type functionName in the search box, and hit enter/return

This will initiate a search of the remote git repository.

10.5 Code style

This section describes style guidelines for LilyPond source code.

10.5.1 Languages

C++ and Python are preferred. Python code should use PEP 8.

10.5.2 Filenames

Definitions of classes that are only accessed via pointers (*) or references (&) shall not be
included as include files.

filenames

".hh" Include files

".cc" Implementation files

".icc" Inline definition files

".tcc" non inline Template defs

in emacs:
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(setq auto-mode-alist

(append '(("\\.make$" . makefile-mode)

("\\.cc$" . c++-mode)

("\\.icc$" . c++-mode)

("\\.tcc$" . c++-mode)

("\\.hh$" . c++-mode)

("\\.pod$" . text-mode)

)

auto-mode-alist))

The class Class name is coded in ‘class-name.*’

10.5.3 Indentation

Standard GNU coding style is used.

Indenting files with fixcc.py (recommended)

LilyPond provides a python script that will adjust the indentation and spacing on a .cc or .hh
file to very near the GNU standard:

scripts/auxiliar/fixcc.py FILENAME

This can be run on all files at once, but this is not recommended for normal contributors or
developers.

scripts/auxiliar/fixcc.py \

$(find flower lily -name '*cc' -o -name '*hh' | grep -v /out)

Indenting with emacs

The following hooks will produce indentation which is similar to our official indentation as
produced with fixcc.py.

(add-hook 'c++-mode-hook

'(lambda ()

(c-set-style "gnu")

(setq indent-tabs-mode nil))

If you like using font-lock, you can also add this to your .emacs:

(setq font-lock-maximum-decoration t)

(setq c++-font-lock-keywords-3

(append

c++-font-lock-keywords-3

'(("\\b\\(a-zA-Z_?+_\\)\\b" 1 font-lock-variable-name-face) ("\\b\\(A-Z?+a-z_?+\\)\\b"

))

Indenting with vim

Although emacs indentation is the GNU standard, correct indentation for C++ files can be
achieved by using the settings recommended in the GNU GCC Wiki (https://gcc.gnu.org/
wiki/FormattingCodeForGCC). Save the following in ~/.vim/after/ftplugin/cpp.vim:

setlocal cindent

setlocal cinoptions=>4,n-2,{2,^-2,:2,=2,g0,h2,p5,t0,+2,(0,u0,w1,m1

setlocal shiftwidth=2

setlocal softtabstop=2

setlocal textwidth=79

setlocal fo-=ro fo+=cql

" use spaces instead of tabs

https://gcc.gnu.org/wiki/FormattingCodeForGCC
https://gcc.gnu.org/wiki/FormattingCodeForGCC
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setlocal expandtab

" remove trailing whitespace on write

autocmd BufWritePre * :%s/\s\+$//e

With these settings, files can be reindented automatically by highlighting the lines to be
indented in visual mode (use V to enter visual mode) and pressing =, or a single line correctly
indented in normal mode by pressing ==.

A scheme.vim file will help improve the indentation of Scheme code. This one was suggested
by Patrick McCarty. It should be saved in ~/.vim/after/syntax/scheme.vim.

" Additional Guile-specific 'forms'

syn keyword schemeSyntax define-public define*-public

syn keyword schemeSyntax define* lambda* let-keywords*

syn keyword schemeSyntax defmacro defmacro* define-macro

syn keyword schemeSyntax defmacro-public defmacro*-public

syn keyword schemeSyntax use-modules define-module

syn keyword schemeSyntax define-method define-class

" Additional LilyPond-specific 'forms'

syn keyword schemeSyntax define-markup-command define-markup-list-command

syn keyword schemeSyntax define-safe-public define-music-function

syn keyword schemeSyntax def-grace-function

" All of the above should influence indenting too

setlocal lw+=define-public,define*-public

setlocal lw+=define*,lambda*,let-keywords*

setlocal lw+=defmacro,defmacro*,define-macro

setlocal lw+=defmacro-public,defmacro*-public

setlocal lw+=use-modules,define-module

setlocal lw+=define-method,define-class

setlocal lw+=define-markup-command,define-markup-list-command

setlocal lw+=define-safe-public,define-music-function

setlocal lw+=def-grace-function

" These forms should not influence indenting

setlocal lw-=if

setlocal lw-=set!

" Try to highlight all ly: procedures

syn match schemeFunc "ly:[^) ]\+"

For documentation work on texinfo files, identify the file extensions used as texinfo files in
your .vim/filetype.vim:

if exists("did_load_filetypes")

finish

endif

augroup filetypedetect

au! BufRead,BufNewFile *.itely setfiletype texinfo

au! BufRead,BufNewFile *.itexi setfiletype texinfo

au! BufRead,BufNewFile *.tely setfiletype texinfo

augroup END

and add these settings in .vim/after/ftplugin/texinfo.vim:

setlocal expandtab



Chapter 10: Programming work 118

setlocal shiftwidth=2

setlocal textwidth=66

10.5.4 Naming Conventions

Naming conventions have been established for LilyPond source code.

Classes and Types

Classes begin with an uppercase letter, and words in class names are separated with _:

This_is_a_class

Members

Member variable names end with an underscore:

Type Class::member_

Macros

Macro names should be written in uppercase completely, with words separated by _:

THIS_IS_A_MACRO

Variables

Variable names should be complete words, rather than abbreviations. For example, it is preferred
to use thickness rather than th or t.

Multi-word variable names in C++ should have the words separated by the underscore char-
acter (‘ ’):

cxx_multiword_variable

Multi-word variable names in Scheme should have the words separated by a hyphen (‘-’):

scheme-multiword-variable

10.5.5 Broken code

Do not write broken code. This includes hardwired dependencies, hardwired constants, slow
algorithms and obvious limitations. If you can not avoid it, mark the place clearly, and add a
comment explaining shortcomings of the code.

Ideally, the comment marking the shortcoming would include TODO, so that it is marked
for future fixing.

We reject broken-in-advance on principle.

10.5.6 Code comments

Comments may not be needed if descriptive variable names are used in the code and the logic
is straightforward. However, if the logic is difficult to follow, and particularly if non-obvious
code has been included to resolve a bug, a comment describing the logic and/or the need for the
non-obvious code should be included.

There are instances where the current code could be commented better. If significant time is
required to understand the code as part of preparing a patch, it would be wise to add comments
reflecting your understanding to make future work easier.

10.5.7 Handling errors

As a general rule, you should always try to continue computations, even if there is some kind
of error. When the program stops, it is often very hard for a user to pinpoint what part of the
input causes an error. Finding the culprit is much easier if there is some viewable output.
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So functions and methods do not return errorcodes, they never crash, but report a program-
ming error and try to carry on.

Error and warning messages need to be localized.

10.5.8 Localization

This document provides some guidelines to help programmers write proper user messages. To
help translations, user messages must follow uniform conventions. Follow these rules when
coding for LilyPond. Hopefully, this can be replaced by general GNU guidelines in the future.
Even better would be to have an English (en GB, en US) guide helping programmers writing
consistent messages for all GNU programs.

Non-preferred messages are marked with ‘+’. By convention, ungrammatical examples are
marked with ‘*’. However, such ungrammatical examples may still be preferred.

• Every message to the user should be localized (and thus be marked for localization). This
includes warning and error messages.

• Do not localize/gettextify:

• ‘programming error ()’s

• ‘programming warning ()’s

• debug strings

• output strings (PostScript, TeX, etc.)

• Messages to be localized must be encapsulated in ‘ (STRING)’ or ‘ f (FORMAT, ...)’. E.g.:

warning (_ ("need music in a score"));

error (_f ("cannot open file: `%s'", file_name));

In some rare cases you may need to call ‘gettext ()’ by hand. This happens when you
pre-define (a list of) string constants for later use. In that case, you’ll probably also need to
mark these string constants for translation, using ‘ i (STRING)’. The ‘ i’ macro is a no-op,
it only serves as a marker for ‘xgettext’.

char const* messages[] = {

_i ("enable debugging output"),

_i ("ignore lilypond version"),

0

};

void

foo (int i)

{

puts (gettext (messages i));

}

See also flower/getopt-long.cc and lily/main.cc.

• Do not use leading or trailing whitespace in messages. If you need whitespace to be printed,
prepend or append it to the translated message

message ("Calculating line breaks..." + " ");

• Error or warning messages displayed with a file name and line number never start with a
capital, eg,

foo.ly: 12: not a duration: 3

Messages containing a final verb, or a gerund (‘-ing’-form) always start with a capital. Other
(simpler) messages start with a lowercase letter

Processing foo.ly...
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`foo': not declared.

Not declaring: `foo'.

• Avoid abbreviations or short forms, use ‘cannot’ and ‘do not’ rather than ‘can’t’ or ‘don’t’
To avoid having a number of different messages for the same situation, well will use quoting
like this ‘"message: ‘%s’"’ for all strings. Numbers are not quoted:

_f ("cannot open file: `%s'", name_str)

_f ("cannot find character number: %d", i)

• Think about translation issues. In a lot of cases, it is better to translate a whole message.
English grammar must not be imposed on the translator. So, instead of

stem at + moment.str () + does not fit in beam

have

_f ("stem at %s does not fit in beam", moment.str ())

• Split up multi-sentence messages, whenever possible. Instead of

warning (_f ("out of tune! Can't find: `%s'", "Key_engraver"));

warning (_f ("cannot find font `%s', loading default", font_name));

rather say:

warning (_ ("out of tune:"));

warning (_f ("cannot find: `%s', "Key_engraver"));

warning (_f ("cannot find font: `%s', font_name));

warning (_f ("Loading default font"));

• If you must have multiple-sentence messages, use full punctuation. Use two spaces after
end of sentence punctuation. No punctuation (esp. period) is used at the end of simple
messages.

_f ("Non-matching braces in text `%s', adding braces", text)

_ ("Debug output disabled. Compiled with NPRINT.")

_f ("Huh? Not a Request: `%s'. Ignoring.", request)

• Do not modularize too much; words frequently cannot be translated without context. It is
probably safe to treat most occurrences of words like stem, beam, crescendo as separately
translatable words.

• When translating, it is preferable to put interesting information at the end of the message,
rather than embedded in the middle. This especially applies to frequently used messages,
even if this would mean sacrificing a bit of eloquence. This holds for original messages too,
of course.

en: cannot open: `foo.ly'

+ nl: kan `foo.ly' niet openen (1)

kan niet openen: `foo.ly'* (2)

niet te openen: `foo.ly'* (3)

The first nl message, although grammatically and stylistically correct, is not friendly for
parsing by humans (even if they speak dutch). I guess we would prefer something like (2)
or (3).

• Do not run make po/po-update with GNU gettext < 0.10.35

10.6 Warnings, Errors, Progress and Debug Output

Available log levels

LilyPond has several loglevels, which specify how verbose the output on the console should be:

• NONE: No output at all, even on failure
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• ERROR: Only error messages

• WARN: Only error messages and warnings

• BASIC PROGRESS: Warnings, errors and basic progress (success, etc.)

• PROGRESS: Warnings, errors and full progress messages

• INFO: Warnings, errors, progress and more detailed information (default)

• DEBUG: All messages, including full debug messages (very verbose!)

The loglevel can either be set with the environment variable LILYPOND_LOGLEVEL or on the
command line with the --loglevel=... option.

Functions for debug and log output

LilyPond has two different types of error and log functions:

• If a warning or error is caused by an identified position in the input file, e.g. by a grob or
by a music expression, the functions of the Input class provide logging functionality that
prints the position of the message in addition to the message.

• If a message can not be associated with a particular position in an input file, e.g. the output
file cannot be written, then the functions in the flower/include/warn.hh file will provide
logging functionality that only prints out the message, but no location.

There are also Scheme functions to access all of these logging functions from scheme. In
addition, the Grob class contains some convenience wrappers for even easier access to these
functions.

The message and debug functions in warn.hh also have an optional argument newline,
which specifies whether the message should always start on a new line or continue a previous
message. By default, progress_indication does NOT start on a new line, but rather continue
the previous output. They also do not have a particular input position associated, so there are
no progress functions in the Input class. All other functions by default start their output on a
new line.

The error functions come in three different flavors: fatal error messages, programming error
messages and normal error messages. Errors written by the error () function will cause Lily-
Pond to exit immediately, errors by Input::error () will continue the compilation, but return
a non-zero return value of the LilyPond call (i.e. indicate an unsuccessful program execution).
All other errors will be printed on the console, but not exit LilyPond or indicate an unsuccessful
return code. Their only differences to a warnings are the displayed text and that they will be
shown with loglevel ERROR.

If the Scheme option warning-as-error is set, any warning will be treated as if
Input::error was called.

All logging functions at a glance

C++, no location C++ from input location

ERROR error (), programming_error

(msg), non_fatal_error (msg)

Input::error (msg),
Input::programming_error

(msg)

WARN warning (msg) Input::warning (msg)

BASIC basic_progress (msg) -
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PROGRESS progress_indication (msg) -

INFO message (msg) Input::message (msg)

DEBUG debug_output (msg) Input::debug_output (msg)

C++ from a Grob Scheme, music expression

ERROR Grob::programming_error (msg) -

WARN Grob::warning (msg) (ly:music-warning music msg)

BASIC - -

PROGRESS - -

INFO - (ly:music-message music msg)

DEBUG - -

Scheme, no location Scheme, input location

ERROR - (ly:error msg args),
(ly:programming-error msg

args)

WARN (ly:warning msg args) (ly:input-warning input msg

args)

BASIC (ly:basic-progress msg args) -

PROGRESS (ly:progress msg args) -

INFO (ly:message msg args) (ly:input-message input msg

args)

DEBUG (ly:debug msg args) -

10.7 Debugging LilyPond

The most commonly used tool for debugging LilyPond is the GNU debugger gdb. The gdb tool
is used for investigating and debugging core LilyPond code written in C++. Another tool is
available for debugging Scheme code using the Guile debugger. This section describes how to
use both gdb and the Guile Debugger.

10.7.1 Debugging overview

Using a debugger simplifies troubleshooting in at least two ways.
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First, breakpoints can be set to pause execution at any desired point. Then, when execution
has paused, debugger commands can be issued to explore the values of various variables or to
execute functions.

Second, the debugger can display a stack trace, which shows the sequence in which functions
have been called and the arguments passed to the called functions.

10.7.2 Debugging C++ code

The GNU debugger, gdb, is the principal tool for debugging C++ code.

Compiling LilyPond for use with gdb

In order to use gdb with LilyPond, it is necessary to compile LilyPond with debugging in-
formation. This is the current default mode of compilation. Often debugging becomes more
complicated when the compiler has optimised variables and function calls away. In that case it
may be helpful to run the following command in the main LilyPond source directory:

./configure --disable-optimising

make

This will create a version of LilyPond with minimal optimization which will allow the de-
bugger to access all variables and step through the source code in-order. It may not accurately
reproduce bugs encountered with the optimized version, however.

You should not do make install if you want to use a debugger with LilyPond. The make

install command will strip debugging information from the LilyPond binary.

Typical gdb usage

Once you have compiled the LilyPond image with the necessary debugging information it will
have been written to a location in a subfolder of your current working directory:

out/bin/lilypond

This is important as you will need to let gdb know where to find the image containing the
symbol tables. You can invoke gdb from the command line using the following:

gdb out/bin/lilypond

This loads the LilyPond symbol tables into gdb. Then, to run LilyPond on test.ly under the
debugger, enter the following:

run test.ly

at the gdb prompt.

As an alternative to running gdb at the command line you may try a graphical interface to
gdb such as ddd:

ddd out/bin/lilypond

You can also use sets of standard gdb commands stored in a .gdbinit file (see next section).

Typical .gdbinit files

The behavior of gdb can be readily customized through the use of a .gdbinit file. A .gdbinit

file is a file named .gdbinit (notice the “.” at the beginning of the file name) that is placed in a
user’s home directory.

The .gdbinit file below is from Han-Wen. It sets breakpoints for all errors and defines func-
tions for displaying scheme objects (ps), grobs (pgrob), and parsed music expressions (pmusic).

file $LILYPOND_GIT/build/out/bin/lilypond

b programming_error

b Grob::programming_error
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define ps

print ly_display_scm($arg0)

end

define pgrob

print ly_display_scm($arg0->self_scm_)

print ly_display_scm($arg0->mutable_property_alist_)

print ly_display_scm($arg0->immutable_property_alist_)

print ly_display_scm($arg0->object_alist_)

end

define pmusic

print ly_display_scm($arg0->self_scm_)

print ly_display_scm($arg0->mutable_property_alist_)

print ly_display_scm($arg0->immutable_property_alist_)

end

10.7.3 Debugging Scheme code

Scheme code can be developed using the Guile command line interpreter top-repl. You can
either investigate interactively using just Guile or you can use the debugging tools available
within Guile.

Using Guile interactively with LilyPond

In order to experiment with Scheme programming in the LilyPond environment, it is necessary
to have a Guile interpreter that has all the LilyPond modules loaded. This requires the following
steps.

First, define a Scheme symbol for the active module in the .ly file:

#(module-define! (resolve-module '(guile-user))

'lilypond-module (current-module))

Now place a Scheme function in the .ly file that gives an interactive Guile prompt:

#(top-repl)

When the .ly file is compiled, this causes the compilation to be interrupted and an interactive
guile prompt to appear. Once the guile prompt appears, the LilyPond active module must be
set as the current guile module:

guile> (set-current-module lilypond-module)

You can demonstrate these commands are operating properly by typing the name of a Lily-
Pond public scheme function to check it has been defined:

guile> fret-diagram-verbose-markup

#<procedure fret-diagram-verbose-markup (layout props marking-list)>

If the LilyPond module has not been correctly loaded, an error message will be generated:

guile> fret-diagram-verbose-markup

ERROR: Unbound variable: fret-diagram-verbose-markup

ABORT: (unbound-variable)

Once the module is properly loaded, any valid LilyPond Scheme expression can be entered
at the interactive prompt.

After the investigation is complete, the interactive guile interpreter can be exited:

guile> (quit)

The compilation of the .ly file will then continue.
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Using the Guile debugger

To set breakpoints and/or enable tracing in Scheme functions, put

\include "guile-debugger.ly"

in your input file after any scheme procedures you have defined in that file. This will invoke
the Guile command-line after having set up the environment for the debug command-line. When
your input file is processed, a guile prompt will be displayed. You may now enter commands to
set up breakpoints and enable tracing by the Guile debugger.

Using breakpoints

At the guile prompt, you can set breakpoints with the set-break! procedure:

guile> (set-break! my-scheme-procedure)

Once you have set the desired breakpoints, you exit the guile repl frame by typing:

guile> (quit)

Then, when one of the scheme routines for which you have set breakpoints is entered, guile
will interrupt execution in a debug frame. At this point you will have access to Guile debugging
commands. For a listing of these commands, type:

debug> help

Alternatively you may code the breakpoints in your LilyPond source file using a command
such as:

#(set-break! my-scheme-procedure)

immediately after the \include statement. In this case the breakpoint will be set straight
after you enter the (quit) command at the guile prompt.

Embedding breakpoint commands like this is particularly useful if you want to look at how
the Scheme procedures in the .scm files supplied with LilyPond work. To do this, edit the file
in the relevant directory to add this line near the top:

(use-modules (scm guile-debugger))

Now you can set a breakpoint after the procedure you are interested in has been declared.
For example, if you are working on routines called by print-book-with in lily-library.scm:

(define (print-book-with book process-procedure)

(let* ((paper (ly:parser-lookup '$defaultpaper))

(layout (ly:parser-lookup '$defaultlayout))

(outfile-name (get-outfile-name book)))

(process-procedure book paper layout outfile-name)))

(define-public (print-book-with-defaults book)

(print-book-with book ly:book-process))

(define-public (print-book-with-defaults-as-systems book)

(print-book-with book ly:book-process-to-systems))

At this point in the code you could add this to set a breakpoint at print-book-with:

(set-break! print-book-with)

Tracing procedure calls and evaluator steps

Two forms of trace are available:

(set-trace-call! my-scheme-procedure)

and

(set-trace-subtree! my-scheme-procedure)



Chapter 10: Programming work 126

set-trace-call! causes Scheme to log a line to the standard output to show when the
procedure is called and when it exits.

set-trace-subtree! traces every step the Scheme evaluator performs in evaluating the
procedure.

10.8 Tracing object relationships

Understanding the LilyPond source often boils down to figuring out what is happening to the
Grobs. Where (and why) are they being created, modified and destroyed? Tracing Lily through
a debugger in order to identify these relationships can be time-consuming and tedious.

In order to simplify this process, a facility has been added to display the grobs that are
created and the properties that are set and modified. Although it can be complex to get set
up, once set up it easily provides detailed information about the life of grobs in the form of a
network graph.

Each of the steps necessary to use the graphviz utility is described below.

1. Installing graphviz

In order to create the graph of the object relationships, it is first necessary to install
Graphviz. Graphviz is available for a number of different platforms:

http://www.graphviz.org/Download..php

2. Modifying config.make

In order for the Graphviz tool to work, config.make must be modified. It is probably a good
idea to first save a copy of config.make under a different name.

In order to have the required functionality available, LilyPond needs to be compiled with
the option -DDEBUG. You can achieve this by configuring with

./configure --enable-checking

3. Rebuilding LilyPond

The executable code of LilyPond must be rebuilt from scratch:

make clean && make

4. Create a graphviz-compatible .ly file

In order to use the graphviz utility, the .ly file must include ly/graphviz-init.ly, and
should then specify the grobs and symbols that should be tracked. An example of this is
found in input/regression/graphviz.ly.

5. Run LilyPond with output sent to a log file

The Graphviz data is sent to stderr by LilyPond, so it is necessary to redirect stderr to a
logfile:

lilypond graphviz.ly 2> graphviz.log

6. Edit the logfile

The logfile has standard LilyPond output, as well as the Graphviz output data. Delete
everything from the beginning of the file up to but not including the first occurrence of
digraph.

Also, delete the final LilyPond message about success from the end of the file.

7. Process the logfile with dot

The directed graph is created from the log file with the program dot:

dot -Tpdf graphviz.log > graphviz.pdf

The pdf file can then be viewed with any pdf viewer.

http://www.graphviz.org/Download..php
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When compiled with -DDEBUG, LilyPond may run slower than normal. The original config-
uration can be restored by rerunning ./configure with --disable-checking. Then rebuild
LilyPond with

make clean && make

10.9 Adding or modifying features

When a new feature is to be added to LilyPond, it is necessary to ensure that the feature is
properly integrated to maintain its long-term support. This section describes the steps necessary
for feature addition and modification.

10.9.1 Write the code

You should probably create a new git branch for writing the code, as that will separate it from
the master branch and allow you to continue to work on small projects related to master.

Please be sure to follow the rules for programming style discussed earlier in this chapter.

10.9.2 Write regression tests

In order to demonstrate that the code works properly, you will need to write one or more
regression tests. These tests are typically .ly files that are found in input/regression.

Regression tests should be as brief as possible to demonstrate the functionality of the code.

Regression tests should generally cover one issue per test. Several short, single-issue regression
tests are preferred to a single, long, multiple-issue regression test.

If the change in the output is small or easy to overlook, use bigger staff size – 40 or more (up
to 100 in extreme cases). Size 30 means "pay extra attention to details in general".

Use existing regression tests as templates to demonstrate the type of header information that
should be included in a regression test.

10.9.3 Write convert-ly rule

If the modification changes the input syntax, a convert-ly rule should be written to automatically
update input files from older versions.

convert-ly rules are found in python/convertrules.py

If possible, the convert-ly rule should allow automatic updating of the file. In some cases,
this will not be possible, so the rule will simply point out to the user that the feature needs
manual correction.

Updating version numbers

If a development release occurs between you writing your patch and having it approved+pushed,
you will need to update the version numbers in your tree. This can be done with:

scripts/auxiliar/update-patch-version old.version.number new.version.number

It will change all files in git, so use with caution and examine the resulting diff.

10.9.4 Automatically update documentation

convert-ly should be used to update the documentation, the snippets, and the regression tests.
This not only makes the necessary syntax changes, it also tests the convert-ly rules.

The automatic updating is performed by moving to the top-level source directory, then
running:

scripts/auxiliar/update-with-convert-ly.sh

If you did an out-of-tree build, pass in the relative path:

LILYPOND_BUILD_DIR=../build-lilypond/ scripts/auxiliar/update-with-convert-ly.sh
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10.9.5 Manually update documentation

Where the convert-ly rule is not able to automatically update the inline LilyPond code in the
documentation (i.e. if a NOT SMART rule is used), the documentation must be manually
updated. The inline snippets that require changing must be changed in the English version
of the docs and all translated versions. If the inline code is not changed in the translated
documentation, the old snippets will show up in the English version of the documentation.

Where the convert-ly rule is not able to automatically update snippets in Documenta-
tion/snippets/, those snippets must be manually updated. Those snippets should be copied
to Documentation/snippets/new. The comments at the top of the snippet describing its auto-
matic generation should be removed. All translated texidoc strings should be removed. The
comment “% begin verbatim” should be removed. The syntax of the snippet should then be
manually edited.

Where snippets in Documentation/snippets are made obsolete, the snippet should be copied
to Documentation/snippets/new. The comments and texidoc strings should be removed as
described above. Then the body of the snippet should be changed to:

\markup {

This snippet is deprecated as of version X.Y.Z and

will be removed from the documentation.

}

where X.Y.Z is the version number for which the convert-ly rule was written.

Update the snippet files by running:

scripts/auxiliar/makelsr.py

Where the convert-ly rule is not able to automatically update regression tests, the regression
tests in input/regression should be manually edited.

Although it is not required, it is helpful if the developer can write relevant material for
inclusion in the Notation Reference. If the developer does not feel qualified to write the docu-
mentation, a documentation editor will be able to write it from the regression tests. In this case
the developer should raise a new issue with the Type=Documentation tag containing a reference
to the original issue number and/or the committish of the pushed patch so that the need for
new documention is not overlooked.

Any text that is added to or removed from the documentation should be changed only in the
English version.

10.9.6 Edit changes.tely

An entry should be added to Documentation/changes.tely to describe the feature changes to be
implemented. This is especially important for changes that change input file syntax.

Hints for changes.tely entries are given at the top of the file.

New entries in changes.tely go at the top of the file.

The changes.tely entry should be written to show how the new change improves LilyPond, if
possible.

10.9.7 Verify successful build

When the changes have been made, successful completion must be verified by doing

make all

make doc

When these commands complete without error, the patch is considered to function success-
fully.

Developers on Windows who are unable to build LilyPond should get help from a GNU/Linux
or OSX developer to do the make tests.
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10.9.8 Verify regression tests

In order to avoid breaking LilyPond, it is important to verify that the regression tests succeed,
and that no unwanted changes are introduced into the output. This process is described in
Section 9.4 [Regtest comparison], page 107.

Typical developer’s edit/compile/test cycle

• Initial test:

make [-jX]

make [-jX CPU_COUNT=X] test-baseline

make [-jX CPU_COUNT=X] check

• Edit/compile/test cycle:

## edit source files, then...

make clean ## only if needed (see below)

make [-jX] ## only if needed (see below)

make [-jX CPU_COUNT=X] test-redo ## redo files differing from baseline

make [-jX CPU_COUNT=X] check

• Reset:

make test-clean

If you modify any source files that have to be compiled (such as .cc or .hh files in flower/

or lily/), then you must run make before make test-redo, so make can compile the modified
files and relink all the object files. If you only modify files which are interpreted, like those in
the scm/ and ly/ directories, then make is not needed before make test-redo.

Also, if you modify any font definitions in the mf/ directory then you must run make clean

and make before running make test-redo. This will recompile everything, whether modified or
not, and takes a lot longer.

Running make check will leave an HTML page out/test-results/index.html. This page
shows all the important differences that your change introduced, whether in the layout, MIDI,
performance or error reporting.

You only need to use make test-clean to start from scratch, prior to running
make test-baseline. To check new modifications, all that is needed is to repeat
make test-redo and make test-check (not forgetting make if needed).

10.9.9 Post patch for comments

See Section 3.3.6 [Uploading a patch for review], page 27.

10.9.10 Push patch

Once all the comments have been addressed, the patch can be pushed.

If the author has push privileges, the author will push the patch. Otherwise, a developer
with push privileges will push the patch.

10.9.11 Closing the issues

Once the patch has been pushed, all the relevant issues should be closed.

On Rietveld, the author should log in and close the issue either by using the ‘Edit Issue’ link,
or by clicking the circled x icon to the left of the issue name.

If the changes were in response to a feature request on the Google issue tracker for LilyPond,
the author should change the status to Fixed and a tag ‘fixed x y z’ should be added, where
the patch was fixed in version x.y.z. If the author does not have privileges to change the status,
an email should be sent to bug-lilypond requesting the BugMeister to change the status.
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10.10 Iterator tutorial

TODO – this is a placeholder for a tutorial on iterators

Iterators are routines written in C++ that process music expressions and sent the music events
to the appropriate engravers and/or performers.

See a short example discussing iterators and their duties in Section 10.16.4 [Articulations on
EventChord], page 142.

10.11 Engraver tutorial

Engravers are C++ classes that catch music events and create the appropriate grobs for display
on the page. Though the majority of engravers are responsible for the creation of a single grob,
in some cases (e.g. New_fingering_engraver), several different grobs may be created.

Engravers listen for events and acknowledge grobs. Events are passed to the engraver in
time-step order during the iteration phase. Grobs are made available to the engraver when they
are created by other engravers during the iteration phase.

10.11.1 Useful methods for information processing

An engraver inherits the following public methods from the Translator base class, which can be
used to process listened events and acknowledged grobs:

• virtual void initialize ()

• void start_translation_timestep ()

• void process_music ()

• void process_acknowledged ()

• void stop_translation_timestep ()

• virtual void finalize ()

These methods are listed in order of translation time, with initialize () and finalize ()

bookending the whole process. initialize () can be used for one-time initialization of context
properties before translation starts, whereas finalize () is often used to tie up loose ends at
the end of translation: for example, an unterminated spanner might be completed automatically
or reported with a warning message.

10.11.2 Translation process

At each timestep in the music, translation proceeds by calling the following methods in turn:

start_translation_timestep () is called before any user information enters the transla-
tors, i.e., no property operations (\set, \override, etc.) or events have been processed yet.

process_music () and process_acknowledged () are called after all events in the current
time step have been heard, or all grobs in the current time step have been acknowledged. The
latter tends to be used exclusively with engravers which only acknowledge grobs, whereas the
former is the default method for main processing within engravers.

stop_translation_timestep () is called after all user information has been processed prior
to beginning the translation for the next timestep.

10.11.3 Preventing garbage collection for SCM member variables

In certain cases, an engraver might need to ensure private Scheme variables (with type SCM)
do not get swept away by Guile’s garbage collector: for example, a cache of the previous key
signature which must persist between timesteps. The method virtual derived_mark () const

can be used in such cases:

Engraver_name::derived_mark ()
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{

scm_gc_mark (private_scm_member_)

}

10.11.4 Listening to music events

External interfaces to the engraver are implemented by protected macros including one or more
of the following:

• DECLARE_TRANSLATOR_LISTENER (event_name)

• IMPLEMENT_TRANSLATOR_LISTENER (Engraver_name, event_name)

where event name is the type of event required to provide the input the engraver needs and
Engraver name is the name of the engraver.

Following declaration of a listener, the method is implemented as follows:

IMPLEMENT_TRANSLATOR_LISTENER (Engraver_name, event_name)

void

Engraver_name::listen_event_name (Stream event *event)

{

...body of listener method...

}

10.11.5 Acknowledging grobs

Some engravers also need information from grobs as they are created and as they terminate.
The mechanism and methods to obtain this information are set up by the macros:

• DECLARE_ACKNOWLEDGER (grob_interface)

• DECLARE_END_ACKNOWLEDGER (grob_interface)

where grob interface is an interface supported by the grob(s) which should be acknowledged.
For example, the following code would declare acknowledgers for a NoteHead grob (via the
note-head-interface) and any grobs which support the side-position-interface:

DECLARE_ACKNOWLEDGER (note_head)

DECLARE_ACKNOWLEDGER (side_position)

The DECLARE_END_ACKNOWLEDGER () macro sets up a spanner-specific acknowledger which
will be called whenever a spanner ends.

Following declaration of an acknowledger, the method is coded as follows:

void

Engraver_name::acknowledge_interface_name (Grob_info info)

{

...body of acknowledger method...

}

Acknowledge functions are called in the order engravers are \consist-ed (the only exception
is if you set must-be-last to #t).

There will always be a call to process-acknowledged () whenever grobs have been created,
and reading stuff from grobs should be delayed until then since other acknowledgers might write
stuff into a grob even after your acknowledger has been called. So the basic workflow is to use
the various acknowledgers to record the grobs you are interested in and write stuff into them (or
do read/write stuff that more or less is accumulative and/or really unrelated to other engravers),
and then use the process-acknowledged () hook for processing (including reading) the grobs
you had recorded.

You can create new grobs in process-acknowledged (). That will lead to a new cycle of
acknowledger () calls followed by a new cycle of process-acknowledged () calls.
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Only when all those cycles are over is stop-translator-timestep () called, and then cre-
ating grobs is no longer an option. You can still ‘process’ parts of the grob there (if that
means just reading out properties and possibly setting context properties based on them) but
stop-translation-timestep () is a cleanup hook, and other engravers might have already
cleaned up stuff you might have wanted to use. Creating grobs in there is not possible since
engravers and other code may no longer be in a state where they could process them, possibly
causing a crash.

10.11.6 Engraver declaration/documentation

An engraver must have a public macro

• TRANSLATOR_DECLARATIONS (Engraver_name)

where Engraver_name is the name of the engraver. This defines the common variables and
methods used by every engraver.

At the end of the engraver file, one or both of the following macros are generally called to
document the engraver in the Internals Reference:

• ADD_ACKNOWLEDGER (Engraver_name, grob_interface)

• ADD_TRANSLATOR (Engraver_name, Engraver_doc, Engraver_creates,

Engraver_reads, Engraver_writes)

where Engraver_name is the name of the engraver, grob_interface is the name of the interface
that will be acknowledged, Engraver_doc is a docstring for the engraver, Engraver_creates is
the set of grobs created by the engraver, Engraver_reads is the set of properties read by the
engraver, and Engraver_writes is the set of properties written by the engraver.

The ADD_ACKNOWLEDGER and ADD_TRANSLATOR macros use a non-standard indentation system.
Each interface, grob, read property, and write property is on its own line, and the closing
parenthesis and semicolon for the macro all occupy a separate line beneath the final interface or
write property. See existing engraver files for more information.

10.12 Callback tutorial

TODO – This is a placeholder for a tutorial on callback functions.

10.13 Understanding pure properties

Pure properties are some of the most difficult properties to understand in LilyPond but, once
understood, it is much easier to work with horizontal spacing. This document provides an
overview of what it means for something to be ‘pure’ in LilyPond, what this purity guarantees,
and where pure properties are stored and used. It finishes by discussing a few case studies for
the pure programmer to save you some time and to prevent you some major headaches.

10.13.1 Purity in LilyPond

Pure properties in LilyPond are properties that do not have any ‘side effects’. That is, looking
up a pure property should never result in calls to the following functions:

• set_property

• set_object

• suicide

This means that, if the property is calculated via a callback, this callback must not only avoid
the functions above but make sure that any functions it calls also avoid the functions above.
Also, to date in LilyPond, a pure function will always return the same value before line breaking
(or, more precisely, before any version of break_into_pieces is called). This convention makes
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it possible to cache pure functions and be more flexible about the order in which functions
are called. For example; Stem.length has a pure property that will never trigger one of the
functions listed above and will always return the same value before line breaking, independent
of where it is called. Sometimes, this will be the actual length of the Stem. But sometimes it
will not. For example; stem that links up with a beam will need its end set to the Y position of
the beam at the stem’s X position. However, the beam’s Y positions can only be known after
the score is broken up in to several systems (a beam that has a shallow slope on a compressed
line of music, for example, may have a steeper one on an uncompressed line). Thus, we only call
the impure version of the properties once we are absolutely certain that all of the parameters
needed to calculate their final value have been calculated. The pure version provides a useful
estimate of what this Stem length (or any property) will be, and the art of creating good pure
properties is trying to get the estimation as close to the actual value as possible.

Of course, like Gregory Peck and Tintin, some Grobs will have properties that will always
be pure. For example, the height of a note-head in not-crazy music will never depend on line
breaking or other parameters decided late in the typesetting process. Inversely, in rare cases,
certain properties are difficult to estimate with pure values. For example, the height of a Hairpin
at a certain cross-section of its horizontal span is difficult to know without knowing the horizontal
distance that the hairpin spans, and LilyPond provides an over-estimation by reporting the pure
height as the entire height of the Hairpin.

Purity, like for those living in a convent, is more like a contract than an a priori. If you write
a pure-function, you are promising the user (and the developer who may have to clean up after
you) that your function will not be dependent on factors that change at different stages of the
compilation process (compilation of a score, not of LilyPond).

One last oddity is that purity, in LilyPond, is currently limited exclusively to things that have
to do with Y-extent and positioning. There is no concept of ‘pure X’ as, by design, X is always
the independent variable (i.e. from column X1 to column X2, what will be the Y height of a
given grob). Furthermore, there is no purity for properties like color, text, and other things for
which a meaningful notion of estimation is either not necessary or has not yet been found. For
example, even if a color were susceptible to change at different points of the compilation process,
it is not clear what a pure estimate of this color would be or how this pure color could be used.
Thus, in this document and in the source, you will see purity discussed almost interchangeably
with Y-axis positioning issues.

10.13.2 Writing a pure function

Pure functions take, at a minimum, three arguments: the grob, the starting column at which
the function is being evaluated (hereafter referred to as start), and the end column at which
the grob is being evaluated (hereafter referred to as end). For items, start and end must be
provided (meaning they are not optional) but will not have a meaningful impact on the result,
as items only occupy one column and will thus yield a value or not (if they are not in the range
from start to end). For spanners however, start and end are important, as we may can get a
better pure estimation of a slice of the spanner than considering it on the whole. This is useful
during line breaking, for example, when we want to estimate the Y-extent of a spanner broken
at given starting and ending columns.

10.13.3 How purity is defined and stored

Purity is defined in LilyPond with the creation of an unpure-pure container (unpure is not a
word, but hey, neither was LilyPond until the 90s). For example:

#(define (foo grob)

'(-1 . 1))

#(define (bar grob start end)
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'(-2 . 2))

\override Stem.length = #(ly:make-unpure-pure-container foo bar)

Note that items can only ever have two pure heights: their actual pure height if they are
between ‘start’ and ‘end’, or an empty interval if they are not. Thus, their pure property is
cached to speed LilyPond up. Pure heights for spanners are generally not cached as they change
depending on the start and end values. They are only cached in certain particular cases. Before
writing a lot of caching code, make sure that it is a value that will be reused a lot.

10.13.4 Where purity is used

Pure Y values must be used in any functions that are called before line breaking. Exam-
ples of this can be seen in Separation_items::boxes to construct horizontal skylines and
in Note_spacing::stem_dir_correction to correct for optical illusions in spacing. Pure
properties are also used in the calculation of other pure properties. For example, the
Axis_group_interface has pure functions that look up other pure functions.

Purity is also implicitly used in any functions that should only ever return pure values. For
example, extra-spacing-height is only ever used before line-breaking and thus should never use
values that would only be available after line breaking. In this case, there is no need to create
callbacks with pure equivalents because these functions, by design, need to be pure.

To know if a property will be called before and/or after line-breaking is sometimes tricky and
can, like all things in coding, be found by using a debugger and/or adding printf statements to
see where they are called in various circumstances.

10.13.5 Case studies

In each of these case studies, we expose a problem in pure properties, a solution, and the pros
and cons of this solution.

Time signatures

A time signature needs to prevent accidentals from passing over or under it, but its extent does
not necessarily extend to the Y-position of accidentals. LilyPond’s horizontal spacing sometimes
makes a line of music compact and, when doing so, allows certain columns to pass over each
other if they will not collide. This type of passing over is not desirable with time signatures in
traditional engraving. But how do we know if this passing over will happen before line breaking,
as we are not sure what the X positions will be? We need a pure estimation of how much extra
spacing height the time signatures would need to prevent this form of passing over without
making this height so large as to overly-distort the Y-extent of an system, which could result in
a very ‘loose’ looking score with lots of horizontal space between columns. So, to approximate
this extra spacing height, we use the Y-extent of a time signature’s next-door-neighbor grobs
via the pure-from-neighbor interface.

• pros: By extending the extra spacing height of a time signature to that of its next-door-
neighbors, we make sure that grobs to the right of it that could pass above or below it do
not.

• cons: This over-estimation of the vertical height could prevent snug vertical spacing of
systems, as the system will be registered as being taller at the point of the time signature
than it actually is. This approach can be used for clefs and bar lines as well.

Stems

As described above, Stems need pure height approximations when they are beamed, as we do
not know the beam positions before line breaking. To estimate this pure height, we take all the
stems in a beam and find their pure heights as if they were not beamed. Then, we find the union
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of all these pure heights and take the intersection between this interval (which is large) and an
interval going from the note-head of a stem to infinity in the direction of the stem so that the
interval stops at the note head.

• pros: This is guaranteed to be at least as long as the beamed stem, as a beamed stem will
never go over the ideal length of the extremal beam of a stem.

• cons: Certain stems will be estimated as being too long, which leads to the same problem
of too-much-vertical-height as described above.

10.13.6 Debugging tips

A few questions to ask yourself when working with pure properties:

• Is the property really pure? Are you sure that its value could not be changed later in the
compiling process due to other changes?

• Can the property be made to correspond even more exactly with the eventual impure
property?

• For a spanner, is the pure property changing correctly depending on the starting and ending
points of the spanner?

• For an Item, will the item’s pure height need to act in horizontal spacing but not in vertical
spacing? If so, use extra-spacing-height instead of pure height.

10.14 LilyPond scoping

The LilyPond language has a concept of scoping, i.e. you can do:

foo = 1

#(begin

(display (+ foo 2)))

with \paper, \midi and \header being nested scope inside the .ly file-level scope. foo = 1 is
translated in to a scheme variable definition.

This implemented using modules, with each scope being an anonymous module that imports
its enclosing scope’s module.

LilyPond’s core, loaded from .scm files, is usually placed in the lily module, outside the
.ly level. In the case of

lilypond a.ly b.ly

we want to reuse the built-in definitions, without changes effected in user-level a.ly leaking into
the processing of b.ly.

The user-accessible definition commands have to take care to avoid memory leaks that could
occur when running multiple files. All information belonging to user-defined commands and
markups is stored in a manner that allows it to be garbage-collected when the module is dis-
persed, either by being stored module-locally, or in weak hash tables.

10.15 Scheme->C interface

Most of the C functions interfacing with Guile/Scheme used in LilyPond are described in the
API Reference of the GUILE Reference Manual (http://www.gnu.org/software/guile/
manual/html_node/index.html).

The remaining functions are defined in lily/lily-guile.cc,
lily/include/lily-guile.hh and lily/include/lily-guile-macros.hh. Although their
names are meaningful there’s a few things you should know about them.

http://www.gnu.org/software/guile/manual/html_node/index.html
http://www.gnu.org/software/guile/manual/html_node/index.html
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10.15.1 Comparison

This is the trickiest part of the interface.

Mixing Scheme values with C comparison operators won’t produce any crash or warning
when compiling but must be avoided:

scm_string_p (scm_value) == SCM_BOOL_T

As we can read in the reference, scm_string_p returns a Scheme value: either #t or #f which
are written SCM_BOOL_T and SCM_BOOL_F in C. This will work, but it is not following to the API
guidelines. For further information, read this discussion:

http://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00646.html

There are functions in the Guile reference that returns C values instead of Scheme values.
In our example, a function called scm_is_string (described after string? and scm_string_p)
returns the C value 0 or 1.

So the best solution was simply:

scm_is_string (scm_value)

There a simple solution for almost every common comparison. Another example: we want
to know if a Scheme value is a non-empty list. Instead of:

(scm_is_true (scm_list_p (scm_value)) && scm_value != SCM_EOL)

one can usually use:

scm_is_pair (scm_value)

since a list of at least one member is a pair. This test is cheap; scm_list_p is actually quite
more complex since it makes sure that its argument is neither a ‘dotted list’ where the last pair
has a non-null cdr, nor a circular list. There are few situations where the complexity of those
tests make sense.

Unfortunately, there is not a scm_is_[something] function for everything. That’s one of
the reasons why LilyPond has its own Scheme interface. As a rule of thumb, tests that are cheap
enough to be worth inlining tend to have such a C interface. So there is scm_is_pair but not
scm_is_list, and scm_is_eq but not scm_is_equal.

General definitions

bool to boolean (SCM b)

Return true if b is SCM_BOOL_T, else return false.

This should be used instead of scm_is_true and scm_is_false for properties since in Lily-
Pond, unset properties are read as an empty list, and by convention unset Boolean properties
default to false. Since both scm_is_true and scm_is_false only compare with ##f in line with
what Scheme’s conditionals do, they are not really useful for checking the state of a Boolean
property.

bool ly is [something] (args)

Behave the same as scm is [something] would do if it existed.

bool is [type] (SCM s)

Test whether the type of s is [type]. [type] is a LilyPond-only set of values (direction, axis...).
More often than not, the code checks LilyPond specific C++-implemented types using

[Type *] unsmob<Type> (SCM s)

This tries converting a Scheme object to a pointer of the desired kind. If the Scheme object is
of the wrong type, a pointer value of 0 is returned, making this suitable for a Boolean test.

http://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00646.html
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10.15.2 Conversion

General definitions

bool to boolean (SCM b)

Return true if b is SCM_BOOL_T, else return false.

This should be used instead of scm_is_true and scm_is_false for properties since empty
lists are sometimes used to unset them.

[C type] ly scm2[C type] (SCM s)

Behave the same as scm to [C type] would do if it existed.

[C type] robust scm2[C type] (SCM s, [C type] d)

Behave the same as scm to [C type] would do if it existed. Return d if type verification fails.

10.16 LilyPond miscellany

This is a place to dump information that may be of use to developers but doesn’t yet have a
proper home. Ideally, the length of this section would become zero as items are moved to other
homes.

10.16.1 Spacing algorithms

Here is information from an email exchange about spacing algorithms.

On Thu, 2010-02-04 at 15:33 -0500, Boris Shingarov wrote: I am experimenting with some
modifications to the line breaking code, and I am stuck trying to understand how some of it
works. So far my understanding is that Simple spacer operates on a vector of Grobs, and it
is a well-known Constrained-QP problem (rods = constraints, springs = quadratic function to
minimize). What I don’t understand is, if the spacer operates at the level of Grobs, which are
built at an earlier stage in the pipeline, how are the changes necessitated by differences in line
breaking, taken into account? in other words, if I take the last measure of a line and place it on
the next line, it is not just a matter of literally moving that graphic to where the start of the
next line is, but I also need to draw a clef, key signature, and possibly other fundamental things
– but at that stage in the rendering pipeline, is it not too late??

Joe Neeman answered:

We create lots of extra grobs (eg. a BarNumber at every bar line) but most of them are not
drawn. See the break-visibility property in item-interface.

Here is another e-mail exchange. Janek Warcho l asked for a starting point to fixing 1301
(change clef colliding with notes). Neil Puttock replied:

The clef is on a loose column (it floats before the head), so the first place I’d look would be
lily/spacing-loose-columns.cc (and possibly lily/spacing-determine-loose-columns.cc). I’d guess
the problem is the way loose columns are spaced between other columns: in this snippet, the
columns for the quaver and tuplet minim are so close together that the clef’s column gets dumped
on top of the quaver (since it’s loose, it doesn’t influence the spacing).

10.16.2 Info from Han-Wen email

In 2004, Douglas Linhardt decided to try starting a document that would explain LilyPond
architecture and design principles. The material below is extracted from that email, which
can be found at http://thread.gmane.org/gmane.comp.gnu.lilypond.devel/2992. The
headings reflect questions from Doug or comments from Han-Wen; the body text are Han-Wen’s
answers.

http://thread.gmane.org/gmane.comp.gnu.lilypond.devel/2992
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Figuring out how things work.

I must admit that when I want to know how a program works, I use grep and emacs and dive
into the source code. The comments and the code itself are usually more revealing than technical
documents.

What’s a grob, and how is one used?

Graphical object - they are created from within engravers, either as Spanners (derived class)
-slurs, beams- or Items (also a derived class) -notes, clefs, etc.

There are two other derived classes System (derived from Spanner, containing a "line of
music") and Paper column (derived from Item, it contains all items that happen at the same
moment). They are separate classes because they play a special role in the linebreaking process.

What’s a smob, and how is one used?

A C(++) object that is encapsulated so it can be used as a Scheme object. See GUILE info,
"19.3 Defining New Types (Smobs)"

When is each C++ class constructed and used?

• Music classes

In the parser.yy see the macro calls MAKE MUSIC BY NAME().

• Contexts

Constructed during "interpreting" phase.

• Engravers

Executive branch of Contexts, plugins that create grobs, usually one engraver per grob type.
Created together with context.

• Layout Objects

= grobs

• Grob Interfaces

These are not C++ classes per se. The idea of a Grob interface hasn’t crystallized well.
ATM, an interface is a symbol, with a bunch of grob properties. They are not objects that
are created or destroyed.

• Iterators

Objects that walk through different music classes, and deliver events in a synchronized way,
so that notes that play together are processed at the same moment and (as a result) end
up on the same horizontal position.

Created during interpreting phase.

BTW, the entry point for interpreting is ly:run-translator (ly run translator on the C++
side)

Can you get to Context properties from a Music object?

You can create music object with a Scheme function that reads context properties (the \apply-
context syntax). However, that function is executed during Interpreting, so you can not really
get Context properties from Music objects, since music objects are not directly connected to
Contexts. That connection is made by the Music iterators

Can you get to Music properties from a Context object?

Yes, if you are given the music object within a Context object. Normally, the music objects
enter Contexts in synchronized fashion, and the synchronization is done by Music iterators.
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What is the relationship between C++ classes and Scheme objects?

Smobs are C++ objects in Scheme. Scheme objects (lists, functions) are manipulated from C++
as well using the GUILE C function interface (prefix: scm )

How do Scheme procedures get called from C++ functions?

scm call *, where * is an integer from 0 to 4. Also scm c eval string (), scm eval ()

How do C++ functions get called from Scheme procedures?

Export a C++ function to Scheme with LY DEFINE.

What is the flow of control in the program?

Good question. Things used to be clear-cut, but we have Scheme and SMOBs now, which means
that interactions do not follow a very rigid format anymore. See below for an overview, though.

Does the parser make Scheme procedure calls or C++ function calls?

Both. And the Scheme calls can call C++ and vice versa. It’s nested, with the SCM datatype
as lubrication between the interactions

(I think the word "lubrication" describes the process better than the traditional word "glue")

How do the front-end and back-end get started?

Front-end: a file is parsed, the rest follows from that. Specifically,

Parsing leads to a Music + Music output def object (see parser.yy, definition of
toplevel expression )

A Music + Music output def object leads to a Global context object (see ly run translator
())

During interpreting, Global context + Music leads to a bunch of Contexts (see
Global translator::run iterator on me ()).

After interpreting, Global context contains a Score context (which contains staves, lyrics
etc.) as a child. Score context::get output () spews a Music output object (either a Paper score
object for notation or Performance object for MIDI).

The Music output object is the entry point for the backend (see ly render output ()).

The main steps of the backend itself are in

• paper-score.cc , Paper score::process

• system.cc , System::get lines()

• The step, where things go from grobs to output, is in System::get line(): each grob delivers
a Stencil (a Device independent output description), which is interpreted by our outputting
backends (scm/output-tex.scm and scm/output-ps.scm) to produce TeX and PS.

Interactions between grobs and putting things into .tex and .ps files have gotten a little
more complex lately. Jan has implemented page-breaking, so now the backend also involves
Paper book, Paper lines and other things. This area is still heavily in flux, and perhaps not
something you should want to look at.

How do the front-end and back-end communicate?

There is no communication from backend to front-end. From front-end to backend is simply the
program flow: music + definitions gives contexts, contexts yield output, after processing, output
is written to disk.
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Where is the functionality associated with KEYWORDs?

See my-lily-lexer.cc (keywords, there aren’t that many) and ly/*.ly (most of the other
backslashed /\words are identifiers)

What Contexts/Properties/Music/etc. are available when they are
processed?

What do you mean exactly with this question?

See ly/engraver-init.ly for contexts, see scm/define-*.scm for other objects.

How do you decide if something is a Music, Context, or Grob
property?

Why is part-combine-status a Music property when it seems (IMO) to be related to the Staff
context?

The Music iterators and Context communicate through two channels

Music iterators can set and read context properties, idem for Engravers and Contexts

Music iterators can send "synthetic" music events (which aren’t in the input) to a context.
These are caught by Engravers. This is mostly a one way communication channel.

part-combine-status is part of such a synthetic event, used by Part combine iterator to com-
municate with Part combine engraver.

Deciding between context and music properties

I’m adding a property to affect how \autochange works. It seems to me that it should be a
context property, but the Scheme autochange procedure has a Music argument. Does this mean
I should use a Music property?

\autochange is one of these extra strange beasts: it requires look-ahead to decide
when to change staves. This is achieved by running the interpreting step twice (see
scm/part-combiner.scm , at the bottom), and storing the result of the first step (where to
switch staves) in a Music property. Since you want to influence that where-to-switch list,
your must affect the code in make-autochange-music (scm/part-combiner.scm). That code is
called directly from the parser and there are no official "parsing properties" yet, so there is no
generic way to tune \autochange. We would have to invent something new for this, or add a
separate argument,

\autochange #around-central-C ..music..

where around-central-C is some function that is called from make-autochange-music.

More on context and music properties

From Neil Puttock, in response to a question about transposition:

Context properties (using \set & \unset) are tied to engravers: they provide information
relevant to the generation of graphical objects.

Since transposition occurs at the music interpretation stage, it has no direct connection with
engravers: the pitch of a note is fixed before a notehead is created. Consider the following
minimal snippet:

{ c' }

This generates (simplified) a NoteEvent, with its pitch and duration as event properties,

(make-music

'NoteEvent

'duration

(ly:make-duration 2 0 1 1)
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'pitch

(ly:make-pitch 0 0 0)

which the Note heads engraver hears. It passes this information on to the NoteHead grob it
creates from the event, so the head’s correct position and duration-log can be determined once
it’s ready for printing.

If we transpose the snippet,

\transpose c d { c' }

the pitch is changed before it reaches the engraver (in fact, it happens just after the parsing
stage with the creation of a TransposedMusic music object):

(make-music

'NoteEvent

'duration

(ly:make-duration 2 0 1 1)

'pitch

(ly:make-pitch 0 1 0)

You can see an example of a music property relevant to transposition: untransposable.

\transpose c d { c'2 \withMusicProperty #'untransposable ##t c' }

-> the second c’ remains untransposed.

Take a look at lily/music.cc to see where the transposition takes place.

How do I tell about the execution environment?

I get lost figuring out what environment the code I’m looking at is in when it executes. I found
both the C++ and Scheme autochange code. Then I was trying to figure out where the code got
called from. I finally figured out that the Scheme procedure was called before the C++ iterator
code, but it took me a while to figure that out, and I still didn’t know who did the calling in
the first place. I only know a little bit about Flex and Bison, so reading those files helped only
a little bit.

Han-Wen: GDB can be of help here. Set a breakpoint in C++, and run. When you hit the
breakpoint, do a backtrace. You can inspect Scheme objects along the way by doing

p ly_display_scm(obj)

this will display OBJ through GUILE.

10.16.3 Music functions and GUILE debugging

Ian Hulin was trying to do some debugging in music functions, and came up with the following
question (edited and adapted to current versions):

HI all, I’m working on the Guile Debugger Stuff, and would like to try debugging a music
function definition such as:

conditionalMark =

#(define-music-function () ()

#{ \tag instrumental-part {\mark \default} #} )

It appears conditionalMark does not get set up as an equivalent of a Scheme

(define conditionalMark = define-music-function () () ...

although something gets defined because Scheme apparently recognizes

#(set-break! conditionalMark)

later on in the file without signalling any Guile errors.

However the breakpoint trap is never encountered as define-music-function passed things
on to ly:make-music-function, which is really C++ code ly_make_music_function, so Guile
never finds out about the breakpoint.
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The answer in the mailing list archive at that time was less than helpful. The question
already misidentifies the purpose of ly:make-music-function which is only called once at the
time of defining conditionalMark but is not involved in its later execution.

Here is the real deal:

A music function is not the same as a GUILE function. It boxes both a proper Scheme
function (with argument list and body from the define-music-function definition) along with
a call signature representing the types of both function and arguments.

Those components can be reextracted using ly:music-function-extract and
ly:music-function-signature, respectively.

When LilyPond’s parser encounters a music function call in its input, it reads, interprets,
and verifies the arguments individually according to the call signature and then calls the proper
Scheme function.

While it is actually possible these days to call a music function as if it were a Scheme function
itself, this pseudo-call uses its own wrapping code matching the argument list as a whole to the
call signature, substituting omitted optional arguments with defaults and verifying the result
type.

So putting a breakpoint on the music function itself will still not help with debugging uses
of the function using LilyPond syntax.

However, either calling mechanism ultimately calls the proper Scheme function stored as part
of the music function, and that is where the breakpoint belongs:

#(set-break! (ly:music-function-extract conditionalMark))

will work for either calling mechanism.

10.16.4 Articulations on EventChord

From David Kastrup’s email http: / / lists . gnu . org / archive / html / lilypond-devel /

2012-02/msg00189.html:

LilyPond’s typesetting does not act on music expressions and music events. It acts exclusively
on stream events. It is the act of iterators to convert a music expression into a sequence of stream
events played in time order.

The EventChord iterator is pretty simple: it just takes its "elements" field when its time
comes up, turns every member into a StreamEvent and plays that through the typesetting pro-
cess. The parser currently appends all postevents belonging to a chord at the end of "elements",
and thus they get played at the same point of time as the elements of the chord. Due to this
design, you can add per-chord articulations or postevents or even assemble chords with a com-
mon stem by using parallel music providing additional notes/events: the typesetter does not see
a chord structure or postevents belonging to a chord, it just sees a number of events occuring
at the same point of time in a Voice context.

So all one needs to do is let the EventChord iterator play articulations after elements, and
then adding to articulations in EventChord is equivalent to adding them to elements (except in
cases where the order of events matters).

http://lists.gnu.org/archive/html/lilypond-devel/2012-02/msg00189.html
http://lists.gnu.org/archive/html/lilypond-devel/2012-02/msg00189.html
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11 Release work

11.1 Development phases

There are 2 states of development on master:

1. Normal development: Any commits are fine.

2. Build-frozen: Do not require any additional or updated libraries or make non-trivial changes
to the build process. Any such patch (or branch) may not be merged with master during
this period.

This should occur approximately 1 month before any alpha version of the next stable release,
and ends when the next unstable branch begins.

After announcing a beta release, branch stable/2.x. There are 2 states of development for
this branch:

1. Normal maintenance: The following patches MAY NOT be merged with this branch:

• Any change to the input syntax. If a file compiled with a previous 2.x (beta) version,
then it must compile in the new version.

Exception: any bugfix to a Critical issue.

• New features with new syntax may be committed, although once committed that syntax
cannot change during the remainder of the stable phase.

• Any change to the build dependencies (including programming libraries, documentation
process programs, or python modules used in the buildscripts). If a contributor could
compile a previous lilypond 2.x, then he must be able to compile the new version.

2. Release prep: Only translation updates and important bugfixes are allowed.

11.2 Minor release checklist

A “minor release” means an update of y in 2.x.y.

Pre-release

1. Don’t forget to prepare the GUB build machine by deleting and moving unneeded files: see
“Subsequent builds” in Section 11.5 [Notes on builds with GUB], page 148.

2. Using any system with git pull access (not necessarily the GUB build machine), use the
commands below to do the following:

• switch to the release branch

• update the release branch from origin/master

• update the translation files

• create the release announcement

• update the build versions.

• VERSION DEVEL = the current development version (previous VER-
SION DEVEL + 0.01)

• VERSION STABLE = the current stable version (probably no change here)

• update the “Welcome to LilyPond” version numbers to the version about to be released

This requires a system which has the release/unstable branch. If you get a warning saying
you are in detached HEAD state, then you should create a release/unstable branch with git

checkout release/unstable.

Check the environment variables are set as in Section 14.2 [Environment variables], page 170.



Chapter 11: Release work 144

You need to ensure you have a clean index and work tree. If the checkout displays modified
files, you might want to run git reset --hard before continuing.

git fetch

git checkout release/unstable

git merge origin/master

make -C $LILYPOND_BUILD_DIR po-replace

mv $LILYPOND_BUILD_DIR/po/lilypond.pot po/

gedit Documentation/web/news-new.itexi Documentation/web/news-old.itexi

gedit Documentation/web/news-headlines.itexi

gedit VERSION

gedit ly/Wel*.ly

Editing the news-headlines.itexi file is a bit tricky, since it contains URLs with escaped
characters. An example of what is needed is that releasing 2.19.50 after the release of
2.19.49 needed the line:

@uref{news.html#LilyPond-2_002e19_002e49-released-October-16_002c-2016,

LilyPond 2.19.49 released - @emph{October 16, 2016}}

to be changed to:

@uref{news.html#LilyPond-2_002e19_002e50-released-November-6_002c-2016,

LilyPond 2.19.50 released - @emph{November 6, 2016}}

Don’t forget to update the entry above that line to show the latest release version.

3. Commit, push, switch back to master (or wherever else):

git commit -m "Release: bump VERSION_DEVEL." VERSION

git commit -m "PO: update template." po/lilypond.pot

git commit -m "Release: update news." Documentation/web/

git commit -m "Release: bump Welcome versions." ly/Wel*.ly

git push origin HEAD:release/unstable

git checkout master

4. If you do not have the previous release test-output tarball, download it and put it in
regtests/

5. Prepare GUB environment by running:

### my-gub.sh

# special terminal, and default PATH environment.

# import these special environment vars:

# HOME, HTTP_PROXY, TERM

env -i \

HOME=$HOME \

HTTP_PROXY=$HTTP_PROXY \

bash --rcfile my-bashrc

### my-bashrc

export PS1="\[\e[1;33mGUB-ENV \w\]$ \[\e[0m\]"

export PATH=$PATH

export TERM=xterm

6. Build release on GUB by running:

make LILYPOND_BRANCH=release/unstable lilypond

or something like:

make LILYPOND_BRANCH=stable/2.16 lilypond

7. Check the regtest comparison in uploads/webtest/ for any unintentional breakage. More
info in Section 9.2 [Precompiled regression tests], page 105.
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8. If any work was done on GUB since the last release, upload binaries to a temporary location,
ask for feedback, and wait a day or two in case there’s any major problems.

☛ ✟

Note: Always do this for a stable release.
✡ ✠

Actual release

1. If you’re not the right user on the webserver, remove the t from the rsync command in:

test-lily/rsync-lily-doc.py

test-lily/rsync-test.py

2. Upload GUB by running:

make lilypond-upload \

LILYPOND_REPO_URL=git://git.sv.gnu.org/lilypond.git \

LILYPOND_BRANCH=release/unstable

or something like:

make lilypond-upload \

LILYPOND_REPO_URL=git://git.sv.gnu.org/lilypond.git \

LILYPOND_BRANCH=stable/2.12

Post release

1. Update the current staging branch with the current news:

git fetch

git checkout origin/staging

git merge origin/release/unstable

2. Update VERSION in lilypond git and upload changes:

gedit VERSION

• VERSION = what you just did +0.0.1

git commit -m "Release: bump VERSION." VERSION

git push origin HEAD:staging

If the push fails with a message like

! [rejected] HEAD -> staging (non-fast-forward)

it means that somebody else updated the staging branch while you were preparing your
change. In that case, you need to restart the Post Release process. Otherwise, proceed:

3. Wait a few hours for the website to update.

4. Email release notice to info-lilypond

11.3 Major release checklist

A “major release” means an update of x in 2.x.0.

Main requirements

These are the current official guidelines.

• 0 Critical issues for two weeks (14 days) after the latest release candidate.

Potential requirements

These might become official guidelines in the future.

• Check reg test

• Check all 2ly scripts
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• Check for emergencies the docs:

grep FIXME --exclude "misc/*" --exclude "*GNUmakefile" \

--exclude "snippets/*" ????*/*

• Check for altered regtests, and document as necessary:

git diff -u -r release/2.FIRST-CURRENT-STABLE \

-r release/2.LAST-CURRENT-DEVELOPMENT input/regression/

Housekeeping requirements

Before the release:

• write release notes. note: stringent size requirements for various websites, so be brief.

• Run convert-ly on all files, bump parser minimum version.

• Update lilypond.pot:

make -C $LILYPOND_BUILD_DIR po-replace

mv $LILYPOND_BUILD_DIR/po/lilypond.pot po/

• Make directories on lilypond.org:

~/download/sources/v2.NEW-STABLE

~/download/sources/v2.NEW-DEVELOPMENT

• Shortly after the release, move all current contributors to previous contributors in
Documentation/included/authors.itexi.

• Delete old material in Documentation/changes.tely, but don’t forget to check it still
compiles! Also update the version numbers:

@node Top

@top New features in 2.NEW-STABLE since 2.OLD-STABLE

• Website:

• make a link from the old unstable to the next stable in lilypond.org’s /doc/ dir. Keep
all previous unstable->stable doc symlinks.

Also, make the old docs self-contained – if there’s a redirect in /doc/v2.OLD-

STABLE/Documentation/index.html , replace it with the index.html.old-2.OLD-

STABLE files.

The post-2.13 docs will need another way of handling the self-containment. It won’t be
hard to whip up a python script that changes the link to ../../../../manuals.html

to ../website/manuals.html, but it’s still a 30-minute task that needs to be done
before 2.16.

• doc auto redirects to v2.NEW-STABLE

• add these two lines to Documentation/web/server/robots.txt:

Disallow: /doc/v2.OLD-STABLE/

Disallow: /doc/v2.NEW-DEVELOPMENT/

Unsorted

• submit po template for translation: send url of tarball to
coordinator@translationproject.org, mentioning lilypond-VERSION.pot

• update links to distros providing lilypond packages? link in:
Documentation/web/download.itexi

This has nothing to do with the release, but it’s a “periodic maintenance” task that might
make sense to include with releases.

mailto:coordinator@translationproject.org
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• Send announcements to...

News:

comp.music.research

comp.os.linux.announce

comp.text.tex

rec.music.compose

Mail:

info-lilypond@gnu.org

linux-audio-announce@lists.linuxaudio.org

linux-audio-user@lists.linuxaudio.org

linux-audio-dev@lists.linuxaudio.org

tex-music@icking-music-archive.org

--- non-existant?

abcusers@blackmill.net

rosegarden-user@lists.sourceforge.net

info-gnu@gnu.org

noteedit-user@berlios.de

Web:

lilypond.org

freshmeat.net

linuxfr.com

http://www.apple.com/downloads

harmony-central.com (news@harmony-central.com)

versiontracker.com [auto]

hitsquad.com [auto]

https://savannah.gnu.org/news/submit.php?group_id=1673

11.4 Release extra notes

Regenerating regression tests

Regenerating regtests (if the lilypond-book naming has changed):

• git checkout release/lilypond-X.Y.Z-A

• take lilypond-book and any related makefile updates from the latest git.

• configure; make; make test

• tar -cjf lilypond-X.Y.Z-A.test-output.tar.bz2 input/regression/out-test/

• mv lilypond-X.Y.Z-A.test-output.tar.bz2 ../gub/regtests/

• cd ../gub/regtests/

• make lilypond

stable/2.12

If releasing stable/2.12, then:

• apply doc patch: patches/rsync-lily.patch (or something like that)

• change infodir in gub/specs/lilypond-doc.py from "lilypond.info" to "lilypond-web.info"
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Updating a release (changing a in x.y.z-a)

Really tentative instructions, almost certainly can be done better.

1. change the VERSION back to release you want. push change. (hopefully you’ll have
forgotten to update it when you made your last release)

2. make sure that there aren’t any lilypond files floating around in target/ (like
usr/bin/lilypond).

3. build the specific package(s) you want, i.e.

bin/gub mingw::lilypond-installer

make LILYPOND_BRANCH=stable/2.12 -f lilypond.make doc

bin/gub --platform=darwin-x86 \

'git://git.sv.gnu.org/lilypond-doc.git?branch=stable/2.12'

or

build everything with the normal "make lilypond", then (maybe) manually delete stuff you
don’t want to upload.

4. manually upload them. good luck figuring out the rsync command(s). Hints are in test-lily/

or

run the normal lilypond-upload command, and (maybe) manually delete stuff you didn’t
want to upload from the server.

11.5 Notes on builds with GUB

Building GUB

GUB - the Grand Unified Builder - is used to build the release versions of LilyPond. For
background information, see [Grand Unified Builder (GUB)], page 20. The simplest way to set
up a GUB build environment is to use a virtual machine with LilyDev (Section 2.1 [LilyDev],
page 5). Follow the instructions on that page to set this up. Make sure that your virtual
machine has enough disk space - a GUB installation takes over 30 GBytes of disk space, and if
you allocate too little, it will fail during the setting up stage and you will have to start again.
64 GBytes should be sufficient.

While GUB is being built, any interruptions are likely to make it almost impossible to restart.
If at all possible, leave the build to continue uninterrupted.

Download GUB and start the set up:

git clone git://github.com/gperciva/gub.git

cd gub

make bootstrap

This will take a very long time, even on a very fast computer. You will need to be patient. It’s
also liable to fail - it downloads a number of tools, and some will have moved and others won’t re-
spond to the network. For example, the perl archive. If this happens, download it from http://

www.cpan.org/src/5.0/perl-5.10.0.tar.gz, saving the archive to gub/downloads/perl/.
Continue the set up with:

make bootstrap

Once this has completed successfully, you can build the LilyPond release package. How-
ever, this uses an archived version of the regression tests, so it is better to download this first.
Download the test output from lilypond.org (you will need to replace 2.15.33-1 with the latest
build):

http://lilypond.org/downloads/binaries/test-output/lilypond-2.15.33-1.test-output.tar.bz2

Copy the tarball into regtests/, and tell the build system that you have done this:

touch regtests/ignore

http://www.cpan.org/src/5.0/perl-5.10.0.tar.gz
http://www.cpan.org/src/5.0/perl-5.10.0.tar.gz
http://lilypond.org/downloads/binaries/test-output/lilypond-2.15.33-1.test-output.tar.bz2
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Now start the GUB build:

make lilypond

That’s it. This will build LilyPond from current master. To build the current unstable
release, run:

make LILYPOND_BRANCH=release/unstable lilypond

The first time you do this, it will take a very long time.

Assuming the build has gone well, it can be uploaded using:

make lilypond-upload

LILYPOND_BRANCH=release/unstable

LILYPOND_REPO_URL=git://git.sv.gnu.org/lilypond.git

Output files

GUB builds the files it needs into the directory gub/target/. As a general rule, these don’t
need to be touched unless there is a problem building GUB (see below). The files to be uploaded
are in gub/uploads/. Once the build has completed successfully, there should be 8 installation
files and 3 archives, totalling about 600MB. There are also 4 directories:

gub/signatures

gub/localdoc

gub/webdoc

gub/webtest

signatures contains files that are used to track whether some of the archives have already
been built. Don’t touch these.

localdoc probably contains local copies of the documentation.

webdoc contains the documentation to be uploaded.

webtest contains the regtest comparison, which should be checked before upload, and is also
uploaded for subsequent checking.

The total upload is about 700 MB in total, and on an ADSL connection will take about 4
hours to upload.

Subsequent builds

In principle, building the next release of LilyPond requires no action other then following the in-
structions in Section 11.2 [Minor release checklist], page 143. Because much of the infrastructure
has already been built, it will take much less time - about an hour on a fast computer.

Continuing to build LilyPond without any other archiving/deletion of previous builds is likely
to be successful, but will take up a fair amount of disk space (around 2GB per build) which
may be a problem with a Virtual Machine. It’s therefore recommended to move (not copy)
gub/uploads to another machine/disk after each build, if space is at a premium.

However, if a significant change has been made to the LilyPond source (e.g. added source
files) the build may fail if tried on top of a previous build. If this happens, be sure to move/delete
gub/uploads and all mentions of LilyPond in gub/target. The latter can be achieved with this
command:

rm -rf target/*/*/*lilypond*

Be very careful with this command. Typing it wrongly could wipe your disk completely.

Updating the web site

The make lilypond-upload command updates the documentation on the LilyPond web site.
However, it does not update any part of the site that is not part of the documentation - for
example, the front page (index.html). The website is updated by 2 cron jobs running on the
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web server. One of these pulls git master to the web server, and the other makes the website
with the standard make website command. They run hourly, 30 minutes apart. So - to update
the front page of the website, it’s necessary to update VERSION and news-headlines.itexi in
master and then wait for the cron jobs to run. (N.B. - this is done by pushing the changes to
staging and letting patchy do its checks before it pushes to master).
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12 Build system notes

☛ ✟

Note: This chapter is in high flux, and is being run in a “wiki-like”
fashion. Do not trust anything you read in this chapter.
✡ ✠

12.1 Build system overview

Build system is currently GNU make, with an extra "stepmake" layer on top. Look at files in
make/ and stepmake/ and all GNUmakefiles.

There is wide-spread dissatisfaction with this system, and we are considering changing. This
would be a huge undertaking (estimated 200+ hours). This change will probably involve not
using GNU make any more – but a discussion about the precise build system will have to wait.
Before we reach that point, we need to figure out (at least approximately) what the current
build system does.

Fundamentally, a build system does two things:

1. Constructs command-line commands, for example:

lilypond-book \

--tons --of --options \

pitches.itely

texi2pdf \

--more --imperial --and --metric --tons --of --options \

pitches.texi

2. If there was a previous build, it decides which parts of the system need to be rebuilt.

When I try to do anything in the build system, it helps to remind myself of this. The "end
result" is just a series of command-line commands. All the black magick is just an attempt to
construct those commands.

12.2 Tips for working on the build system

• Add:

echo "aaa"

echo "bbb"

to the build system files in various places. This will let you track where the program is, in
various points of the build.

PH note. There are lots of places where Make doesn’t let you put echo commands. My top
tip for tracing how make runs is to put

$(error Some Text to display)

This will stop make running and print the text Some Text to display.

End PH note.

• First task: understand how make website works, without the translations. Looking at the
english-only website is the best introduction to the build system... it only covers about 5%
of the whole thing, but even that will likely take 10 hours or more.

12.3 General build system notes
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12.3.1 How stepmake works

Typing make website runs the file GNUmakefile from the build directory. This only contains 3
lines:

depth = .

include config$(if $(conf),-$(conf),).make

include $(configure-srcdir)/GNUmakefile.in

The variable depth is used throughout the make system to track how far down the directory
structure the make is. The first include sets lots of variables but doesn’t "do" anything. Default
values for these variables are automatically detected at the ./configure step, which creates the
file config.make. The second include runs the file GNUmakefile.in from the top level source
directory.

This sets another load of variables, and then includes (i.e. immediately runs) stepmake.make
from the make subdirectory. This sets a load of other variables, and then runs make/config.make
- which doesn’t seem to exist... Next, it runs make/toplevel-version.make, which sets the
version variables for major, minor, patch, stable, development and mypatchlevel (which seems
to be used for patch numbers for non-stable versions only?).

Next - make/local.make, which doesn’t exist.

Then a few more variable and the interesting comment:

# Don't try to outsmart us, you puny computer!

# Well, UGH. This only removes builtin rules from

and then tests to see whether BUILTINS REMOVED is defined. It appears to be when I
run make, and so stepmake/stepmake/no-builtin-rules.make is run. The comment at the
head of this file says:

# UGH. GNU make comes with implicit rules.

# We don't want any of them, and can't force users to run

# --no-builtin-rules

I’ve not studied that file at length, but assume it removes all make’s build-in rules (e.g. *.c
files are run through the GNU C compiler) - there’s a lot of them in here, and a lot of comments,
and I’d guess most of it isn’t needed.

We return to stepmake.make, where we hit the make rule all: The first line of this is:

-include $(addprefix $(depth)/make/,$(addsuffix -inclusions.make, $(LOCALSTEPMAKE_TEMPLATES)))

which, when the variables are substituted, gives:

./make/generic-inclusions.make

./make/lilypond-inclusions.make.

(Note - according to the make documentation, -include is only different from include in that
it doesn’t produce any kind of error message when the included file doesn’t exist).

And the first file doesn’t exist. Nor the second. Next:

-include $(addprefix $(stepdir)/,$(addsuffix -inclusions.make, $(STEPMAKE_TEMPLATES)))

which expands to the following files:

/home/phil/lilypond-git/stepmake/stepmake/generic-inclusions.make

/home/phil/lilypond-git/stepmake/stepmake/toplevel-inclusions.make

/home/phil/lilypond-git/stepmake/stepmake/po-inclusions.make

/home/phil/lilypond-git/stepmake/stepmake/install-inclusions.make.

One little feature to notice here - these are all absolute file locations - the line prior to this
used relative locations. And none of these files exist, either.

(Further note - I’m assuming all these lines of make I’m following are autogenerated, but
that’ll be something else to discover.)
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JM: “No, these lines are not useful in LilyPond (this is why you think they are autogenerated),
but they are part of StepMake, which was meant to be a package to be installed as a build system
over autoconf/make in software project source trees.”

Next in stepmake.make:
include $(addprefix $(stepdir)/,$(addsuffix -vars.make, $(STEPMAKE_TEMPLATES)))

which expands to:

/home/phil/lilypond-git/stepmake/stepmake/generic-vars.make

/home/phil/lilypond-git/stepmake/stepmake/toplevel-vars.make

/home/phil/lilypond-git/stepmake/stepmake/po-vars.make

/home/phil/lilypond-git/stepmake/stepmake/install-vars.make.

Woo. They all exist (they should as there’s no - in front of the include). generic-vars.make
sets loads of variables (funnily enough). toplevel-vars.make is very short - one line commented
as # override Generic_vars.make: and 2 as follows:

# urg?

include $(stepdir)/documentation-vars.make

I assume the urg comment refers to the fact that this should re-
ally just create more variables, but it actually sends us off to
/home/phil/lilypond-git/stepmake/stepmake/documentation-vars.make.

That file is a 3 line variable setting one.

po-vars.make has the one-line comment # empty, as does install-vars.make.

So now we’re back to stepmake.make.

The next lines are :
# ugh. need to do this because of PATH :=$(top-src-dir)/..:$(PATH)

include $(addprefix $(depth)/make/,$(addsuffix -vars.make, $(LOCALSTEPMAKE_TEMPLATES)))

and the include expands to:

include ./make/generic-vars.make ./make/lilypond-vars.make.

These again set variables, and in some cases export them to allow child make processes to
use them.

The final 4 lines of stepmake.make are:
include $(addprefix $(depth)/make/,$(addsuffix -rules.make, $(LOCALSTEPMAKE_TEMPLATES)))

include $(addprefix $(stepdir)/,$(addsuffix -rules.make, $(STEPMAKE_TEMPLATES)))

include $(addprefix $(depth)/make/,$(addsuffix -targets.make, $(LOCALSTEPMAKE_TEMPLATES)))

include $(addprefix $(stepdir)/,$(addsuffix -targets.make, $(STEPMAKE_TEMPLATES)))

which expand as follows:

include ./make/generic-rules.make ./make/lilypond-rules.make

include

/home/phil/lilypond-git/stepmake/stepmake/generic-rules.make

/home/phil/lilypond-git/stepmake/stepmake/toplevel-rules.make

/home/phil/lilypond-git/stepmake/stepmake/po-rules.make

/home/phil/lilypond-git/stepmake/stepmake/install-rules.make

include ./make/generic-targets.make ./make/lilypond-targets.make

include

/home/phil/lilypond-git/stepmake/stepmake/generic-targets.make

/home/phil/lilypond-git/stepmake/stepmake/toplevel-targets.make

/home/phil/lilypond-git/stepmake/stepmake/po-targets.make

/home/phil/lilypond-git/stepmake/stepmake/install-targets.make

lilypond-rules.make is #empty

generic-rules.make does seem to have 2 rules in it. They are:

$(outdir)/%.ly: %.lym4
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$(M4) $< | sed "s/\`/,/g" > $@

$(outdir)/%: %.in

rm -f $@

cat $< | sed $(sed-atfiles) | sed $(sed-atvariables) > $@

I believe the first rule is for *.ly files, and has a prerequisite that *.lym4 files must be built
first. The recipe is m4 | sed "s/\`/,/g" >. Perhaps someone with more Unix/make knowledge
can comment on exactly what the rules mean/do.

toplevel-rules.make is #empty

po-rules.make is #empty

install-rules.make is #empty

generic-targets.make contains 2 lines of comments.

lilypond-targets.make contains only:

## TODO: fail dist or web if no \version present.

check-version:

grep -L version $(LY_FILES)

stepmake/generic-targets.make contains lots of rules - too many to list here - it seems
to be the main file for rules. (FWIW I haven’t actually found a rule for website: anywhere,
although it clearly exists. I have also found that you can display a rule in the terminal by typing,
say make -n website. This is probably common knowledge.

stepmake/toplevel-targets.make adds a load of other (and occasionally the same) rules
to the gernric-targets.

stepmake/po-targets.make is rules for po* makes.

stepmake/install-targets.make has rules for local-install*.

And that’s the end of stepmake.make. Back to GNUmakefile.in.

A bit more info from 27 March. I’ve put some error traces into GNUmakefile in the build
directory, and it looks like the following lines actually cause the make to run (putting an error
call above them - no make; below them - make):

ifeq ($(out),www)

# All web targets, except info image symlinks and info docs are

# installed in non-recursing target from TOP-SRC-DIR

install-WWW:

-$(INSTALL) -m 755 -d $(DESTDIR)$(webdir)

rsync -rl --exclude='*.signature' $(outdir)/offline-root $(DESTDIR)$(webdir)

$(MAKE) -C Documentation omf-local-install

I don’t currently understand the ifeq, since $(out) is empty at this point, but the line
starting -$(INSTALL) translates to:

-/usr/bin/python /home/phil/lilypond-git/stepmake/bin/install.py \

-c -m 755 -d /usr/local/share/doc/lilypond/html

End of work for Sunday 27th.

Another alterative approach to understanding the website build would be to redirect make

-n website and make website to a text file and work through a) what it does and b) where the
errors are occurring.

GP: wow, all the above is much more complicated than I’ve ever looked at stuff – I tend to do
a "back first" approach (where I begin from the command-line that I want to modify, figure out
where it’s generated, and then figure out how to change the generated command-line), rather
than a "front first" (where you begin from the "make" command).
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12.4 Doc build

12.4.1 The function of make doc

The following is a set of notes on how make doc functions.

Preliminary question to be answered some time: where do all the GNUmakefiles come from.
They’re in the build directory, but this is not part of source. Must be the configure script. And
it looks like this comes from autogen.sh. Must at some point kill the whole git directory, repull
and see what is created when.

Anyway, here’s how make doc progresses:

This is the build dependency tree from stepmake/stepmake/generic-targets.make:

doc: doc-stage-1

doc-stage-1:

$(MAKE) -C $(depth)/scripts/build out=

$(MAKE) out=www WWW-1

WWW-1: local-WWW-1

$(LOOP)

$(MAKE) out=www WWW-2

WWW-2: local-WWW-2

$(LOOP)

$(MAKE) out=www WWW-post

MAKE = make --no-builtin-rules

-C = Change to directory before make

doc-stage-1 does lots of opening and looking in files, but no processing.

Variable LOOP =

+ make PACKAGE=LILYPOND package=lilypond -C python

&& make PACKAGE=LILYPOND package=lilypond -C scripts

&& make PACKAGE=LILYPOND package=lilypond -C flower

&& make PACKAGE=LILYPOND package=lilypond -C lily

&& make PACKAGE=LILYPOND package=lilypond -C mf

&& make PACKAGE=LILYPOND package=lilypond -C ly

&& make PACKAGE=LILYPOND package=lilypond -C tex

&& make PACKAGE=LILYPOND package=lilypond -C ps

&& make PACKAGE=LILYPOND package=lilypond -C scm

&& make PACKAGE=LILYPOND package=lilypond -C po

&& make PACKAGE=LILYPOND package=lilypond -C make

&& make PACKAGE=LILYPOND package=lilypond -C elisp

&& make PACKAGE=LILYPOND package=lilypond -C vim

&& make PACKAGE=LILYPOND package=lilypond -C input

&& make PACKAGE=LILYPOND package=lilypond -C stepmake

&& make PACKAGE=LILYPOND package=lilypond -C Documentation

&& true

From git grep:

stepmake/stepmake/generic-vars.make has this:
LOOP=+$(foreach i, $(SUBDIRS), $(MAKE) PACKAGE=$(PACKAGE) package=$(package) -C $(i) $@ &&) true

$@ is the name of the target - WWW-1 in this case.

In GNUmakefile.in we find:

SUBDIRS = python scripts \

flower lily \
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mf ly \

tex ps scm \

po make \

elisp vim \

input \

stepmake $(documentation-dir)

So that’s how we get the main make loop...

That loop expands like this:

make PACKAGE=LILYPOND package=lilypond -C python WWW-1 &&

make PACKAGE=LILYPOND package=lilypond -C scripts WWW-1 &&

make PACKAGE=LILYPOND package=lilypond -C flower WWW-1 &&

make PACKAGE=LILYPOND package=lilypond -C lily WWW-1 &&

make PACKAGE=LILYPOND package=lilypond -C mf WWW-1 &&

make PACKAGE=LILYPOND package=lilypond -C ly WWW-1 &&

make PACKAGE=LILYPOND package=lilypond -C tex WWW-1 &&

make PACKAGE=LILYPOND package=lilypond -C ps WWW-1 &&

make PACKAGE=LILYPOND package=lilypond -C scm WWW-1 &&

make PACKAGE=LILYPOND package=lilypond -C po WWW-1 &&

make PACKAGE=LILYPOND package=lilypond -C make WWW-1 &&

make PACKAGE=LILYPOND package=lilypond -C elisp WWW-1 &&

make PACKAGE=LILYPOND package=lilypond -C vim WWW-1 &&

make PACKAGE=LILYPOND package=lilypond -C input WWW-1 &&

make PACKAGE=LILYPOND package=lilypond -C stepmake WWW-1 &&

make PACKAGE=LILYPOND package=lilypond -C Documentation WWW-1 &&

true

The directories up to and including vim produce no effect with make in non-debug mode,
although debug does show lots of action.

git/build/input/GNUmakefile is:

depth=../

include $(depth)/config$(if $(conf),-$(conf),).make

include $(configure-srcdir)/./input/GNUmakefile

MODULE_INCLUDES += $(src-dir)/$(outbase)

The first include is:

..//config.make

(note the // which is strictly wrong)

which has lots of variables to set, but no action occurs.

The second is:

lilypond-git/./input/GNUmakefile

which similarly doesn’t create any actual action.

An error message at the end of build/input/GNUmakefile stops make processing before it
moves on to regression - so where does that come from?

And the answer is - make processes all directories in the directory it’s entered (with some
exceptions like out and out-www) and so it changes to /regression.

It then seems to consider whether it needs to make/remake loads of makefiles. Don’t under-
stand this yet. Possibly these are all the makefiles it’s processing, and it always checks they’re
up to date before processing other files?

Could be correct - some of this output is:

Must remake target `../../make/ly-inclusions.make'.
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Failed to remake target file `../../make/ly-inclusions.make'.

Having decided that, it then leaves the directory and re-executes:

make PACKAGE=LILYPOND package=lilypond -C regression WWW-1

The top of this make is:

This program built for i486-pc-linux-gnu

Reading makefiles...

Reading makefile `GNUmakefile'...

Reading makefile `../..//config.make' (search path) (no ~ expansion)...

which looks like it’s re-reading all its known makefiles to check they’re up to date.

(From the make manual:

To this end, after reading in all makefiles, make will consider each as a goal target and
attempt to update it. If a makefile has a rule which says how to update it (found either in
that very makefile or in another one) or if an implicit rule applies to it (see Chapter 10 [Using
Implicit Rules], page 103), it will be updated if necessary. After all makefiles have been checked,
if any have actually been changed, make starts with a clean slate and reads all the makefiles
over again. (It will also attempt to update each of them over again, but normally this will not
change them again, since they are already up to date.)

So my assumption seems correct)

There appear to be about 74 of them. After all the makefile checking, we get this:

Updating goal targets....

Considering target file `WWW-1'.

File `WWW-1' does not exist.

Considering target file `local-WWW-1'.

File `local-WWW-1' does not exist.

Considering target file `out-www/collated-files.texi'.

File `out-www/collated-files.texi' does not exist.

Looking for an implicit rule for `out-www/collated-files.texi'.

Trying pattern rule with stem `collated-files.texi'.

Trying implicit prerequisite `collated-files.texi.in'.

Trying pattern rule with stem `collated-files.texi'.

Trying implicit prerequisite `collated-files.texi.in'.

Trying pattern rule with stem `collated-files'.

Trying implicit prerequisite `collated-files.tely'.

Trying pattern rule with stem `collated-files'.

Trying implicit prerequisite `out-www/collated-files.tely'.

Trying rule prerequisite `out-www/version.itexi'.

Found prerequisite `out-www/version.itexi' as VPATH `/home/phil/lilypond-git/input/regression/out-

www/version.itexi'

grep finds this if searching for local-WWW-1:

make/lysdoc-targets.make:

local-WWW-1: $(outdir)/collated-files.texi $(outdir)/collated-files.pdf

which means that local-WWW-1 depends on coll*.texi and coll*.pdf and so these will need
to be checked to see if they’re up to date. So make needs to find rules for both of those and (as
it says) it certainly needs to make coll*.texi, since it doesn’t exist.

In ly-rules.make we have:

.SUFFIXES: .doc .tely .texi .ly

which I’ll work out at some point, and also this rule:

$(outdir)/%.texi: $(outdir)/%.tely $(outdir)/version.itexi $(DOCUMENTATION_LOCALE_TARGET) $(INIT_LY_SOURCES)

LILYPOND_VERSION=$(TOPLEVEL_VERSION) $(PYTHON) $(LILYPOND_BOOK) $(LILYPOND_BOOK_INCLUDES) -

-process='$(LILYPOND_BOOK_PROCESS) $(LILYPOND_BOOK_INCLUDES) $(LILYPOND_BOOK_LILYPOND_FLAGS)' -

-output=$(outdir) --format=$(LILYPOND_BOOK_FORMAT) $(LILYPOND_BOOK_FLAGS) $<
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Note that the recipe is a very long line - it could probably benefit from splitting. The same
makefile also has:

$(outdir)/%.texi: $(outdir)/%.tely $(outdir)/version.itexi $(DOCUMENTATION_LOCALE_TARGET) $(INIT_LY_SOURCES)

LILYPOND_VERSION=$(TOPLEVEL_VERSION) $(PYTHON) $(LILYPOND_BOOK) $(LILYPOND_BOOK_INCLUDES) -

-process='$(LILYPOND_BOOK_PROCESS) $(LILYPOND_BOOK_INCLUDES) $(LILYPOND_BOOK_LILYPOND_FLAGS)' -

-output=$(outdir) --format=$(LILYPOND_BOOK_FORMAT) $(LILYPOND_BOOK_FLAGS) $<

which seems to be an almost exact duplicate. Whatever, the first one is executed first. Have
not checked if the second executes.

The first recipe translates as this:

LILYPOND_VERSION=2.15.0 /usr/bin/python --process=' ' \

--output=./out-www --format= --lily-output-dir \

/home/phil/lilypond-git/build/out/lybook-db

if we stop the build with an $(error), but I think this is because we need to allow it to process
the dependencies first. It looks like foo.texi is shown as being dependent on foo.tely, plus a load
of other files.

DOCUMENTATION_LOCALE_TARGET is blank

INIT_LY_SOURCES = /home/phil/lilypond-git/scm/auto-beam.scm \

/home/phil/lilypond-git/scm/autochange.scm

plus 10s (100s?) of other .scm files.

SCHEME_SOURCES = /home/phil/lilypond-git/ly/Welcome-to-LilyPond-MacOS.ly \

/home/phil/lilypond-git/ly/Welcome_to_LilyPond.ly

ditto .ly files. This does seem a teency bit wrong - it looks like the .ly and .scm files have
been interchanged. ly-vars.make has these 2 lines:

INIT_LY_SOURCES = $(wildcard $(top-src-dir)/scm/*.scm)

SCHEME_SOURCES = $(wildcard $(top-src-dir)/ly/*.ly)

Looks like a bug.....

So it now works its way through all these files, checking if they need to be remade. This is
100s of lines of the debug listing, although none in the normal list. Clearly none has to be made
since they’re source files. It concludes:

Must remake target `out-www/collated-files.tely'

lysdoc-rules.make has this:
$(outdir)/collated-files.tely: $(COLLATED_FILES)

$(LYS_TO_TELY) --name=$(outdir)/collated-files.tely --title="$(TITLE)" --author="$(AUTHOR)" $^

lysdoc-vars.make has:

COLLATED_FILES = $(sort $(TEXINFO_SOURCES) $(LY_FILES) $(OUT_LY_FILES) )

We find that:

TEXINFO_SOURCES = AAA-intro-regression.tely

OUT_LY_FILES is empty

so LY FILES has the big long list of all the .ly files in the regression directory.

This kicks off

/home/phil/lilypond-git/build/scripts/build/out/lys-to-tely

with a list of all the files in the regression test directory. This should (I believe) create the
file collated-files.tely.

So the next rule in make is for version.itexi, and make duly checks this. There’s a rule in
doc-i18n-root-rules.make that this depends on git/VERSION:

$(outdir)/version.%: $(top-src-dir)/VERSION

$(PYTHON) $(top-src-dir)/scripts/build/create-version-itexi.py > $

This causes create-version-itexi.py to run and create version.itexi.
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Once that’s done, all the other *.scm and *.ly files are checked and since they have no rules
associated, they aren’t remade (just as well for source files, really). Since version.itexi was
remade make concludes that collated-files.texi must be remade. To do this, it runs lilypond-
book.py on collated-files.tely, as below:

LILYPOND_VERSION=2.15.0

/usr/bin/python

/home/phil/lilypond-git/scripts/lilypond-book.py

-I /home/phil/lilypond-git/input/regression/

-I ./out-www -I /home/phil/lilypond-git/input

-I /home/phil/lilypond-git/Documentation

-I /home/phil/lilypond-git/Documentation/snippets

-I /home/phil/lilypond-git/input/regression/

-I /home/phil/lilypond-git/Documentation/included/

-I /home/phil/lilypond-git/build/mf/out/

-I /home/phil/lilypond-git/build/mf/out/

-I /home/phil/lilypond-git/Documentation/pictures

-I /home/phil/lilypond-git/build/Documentation/pictures/./out-www

--process='/home/phil/lilypond-git/build/out/bin/lilypond

-I /home/phil/lilypond-git/input/regression/

-I ./out-www

-I /home/phil/lilypond-git/input

-I /home/phil/lilypond-git/Documentation

-I /home/phil/lilypond-git/Documentation/snippets

-I /home/phil/lilypond-git/input/regression/

-I /home/phil/lilypond-git/Documentation/included/

-I /home/phil/lilypond-git/build/mf/out/

-I /home/phil/lilypond-git/build/mf/out/

-I /home/phil/lilypond-git/Documentation/pictures

-I /home/phil/lilypond-git/build/Documentation/pictures/./out-www

-dbackend=eps

--formats=ps,png,pdf

-dinclude-eps-fonts

-dgs-load-fonts

--header=doctitle

--header=doctitlecs

--header=doctitlede

--header=doctitlees

--header=doctitlefr

--header=doctitlehu

--header=doctitleit

--header=doctitleja

--header=doctitlenl

--header=doctitlezh

--header=texidoc

--header=texidoccs

--header=texidocde

--header=texidoces

--header=texidocfr

--header=texidochu

--header=texidocit

--header=texidocja
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--header=texidocnl

--header=texidoczh

-dcheck-internal-types

-ddump-signatures

-danti-alias-factor=2'

--output=./out-www

--format=texi-html

--verbose

--lily-output-dir /home/phil/lilypond-git/build/out/lybook-db

out-www/collated-files.tely

So - lilypond-book runs on:

input/regression/out-www/collated-files.tely

Note the –verbose flag - this is from the make variable LILYPOND BOOK VERBOSE which
is added to the make variable LILYPOND BOOK FLAGS.

Now found the invocation to write some of the image files. It’s like this:

/home/phil/lilypond-git/build/out/bin/lilypond

-I /home/phil/lilypond-git/input/regression/

-I ./out-www -I /home/phil/lilypond-git/input

-I /home/phil/lilypond-git/Documentation

-I /home/phil/lilypond-git/Documentation/snippets

-I /home/phil/lilypond-git/input/regression/

-I /home/phil/lilypond-git/Documentation/included/

-I /home/phil/lilypond-git/build/mf/out/

-I /home/phil/lilypond-git/build/mf/out/

-I /home/phil/lilypond-git/Documentation/pictures

-I /home/phil/lilypond-git/build/Documentation/pictures/./out-www

-dbackend=eps

--formats=ps,png,pdf

-dinclude-eps-fonts

-dgs-load-fonts

--header=doctitle

--header=doctitlecs

--header=doctitlede

--header=doctitlees

--header=doctitlefr

--header=doctitlehu

--header=doctitleit

--header=doctitleja

--header=doctitlenl

--header=doctitlezh

--header=texidoc

--header=texidoccs

--header=texidocde

--header=texidoces

--header=texidocfr

--header=texidochu

--header=texidocit

--header=texidocja

--header=texidocnl

--header=texidoczh

-dcheck-internal-types
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-ddump-signatures

-danti-alias-factor=2

-I "/home/phil/lilypond-git/build/out/lybook-db"

-I "/home/phil/lilypond-git/build/input/regression"

-I "/home/phil/lilypond-git/input/regression"

-I "/home/phil/lilypond-git/build/input/regression/out-www"

-I "/home/phil/lilypond-git/input"

-I "/home/phil/lilypond-git/Documentation"

-I "/home/phil/lilypond-git/Documentation/snippets"

-I "/home/phil/lilypond-git/input/regression"

-I "/home/phil/lilypond-git/Documentation/included"

-I "/home/phil/lilypond-git/build/mf/out"

-I "/home/phil/lilypond-git/build/mf/out"

-I "/home/phil/lilypond-git/Documentation/pictures"

-I "/home/phil/lilypond-git/build/Documentation/pictures/out-www"

--formats=eps

--verbose

-deps-box-padding=3.000000

-dread-file-list

-dno-strip-output-dir

"/home/phil/lilypond-git/build/out/lybook-db/snippet-names--415419468.ly"'

Note the –verbose. This causes 100s of lines of Lily debug output. But at present I can’t
work out where the flag comes from. Later.

12.4.2 Building a bibliography

Bibliography files contain a list of citations, like this:

@Book{vinci,

author = {Vinci, Albert C.},

title = {Fundamentals of Traditional Music Notation},

publisher = {Kent State University Press},

year = {1989}

}

There are a variety of types of citation (e.g. Book (as above), article, publication). Each
cited publication has a list of entries that can be used to identify the publication. Bibliograpies
are normally stored as files with a .bib extension. One part of the doc-build process is trans-
forming the bibliography information into texinfo files. The commands to do this are in the
GNUmakefile in the Documentation directory.

A typical line of the makefile to translate a single bibliography is:

$(outdir)/colorado.itexi:

BSTINPUTS=$(src-dir)/essay $(buildscript-dir)/bib2texi \

-s $(top-src-dir)/Documentation/lily-bib \

-o $(outdir)/colorado.itexi \

$(src-dir)/essay/colorado.bib

Line by line:

$(outdir)/colorado.itexi:

We’re making the file colorado.itexi and so this is the make instruction.

BSTINPUTS=$(src-dir)/essay $(buildscript-dir)/bib2texi \

It’s in the essay directory and we want to run the bib2texi.py script against it.

-s $(top-src-dir)/Documentation/lily-bib \
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The style template is lily-bib.bst and is found in the Documentation directory.

-o $(outdir)/colorado.itexi \

The output file in colorado.itexi.

$(src-dir)/essay/colorado.bib

The input file is colorado.bib in the essay directory.

The bib2texi Python script used to be used with a variety of options, but now is always
called using the same options, as above. Its job is to create the file containing the options for
bibtex (the program that actually does the translation), run bibtex, and then clean up some
temporary files. Its main "value add" is the creation of the options file, using this code:

open (tmpfile + '.aux', 'w').write (r'''

\relax

\citation{*}

\bibstyle{%(style)s}

\bibdata{%(files)s}''' % vars ())

The key items are the style file (now always lily-bib for us) and the input file.

The style file is written in its own specialised language, described to some extent at

http://amath.colorado.edu/documentation/LaTeX/reference/faq/bibtex.pdf

The file lily-bib.bst also has fairly extensive commenting.

12.5 Website build
☛ ✟

Note: This information applies only to the standard make website

from the normal build directory. The process is different for
dev/website-build.
✡ ✠

The rule for make website is found in GNUmakefile.in:

website:

$(MAKE) config_make=$(config_make) \

top-src-dir=$(top-src-dir) \

-f $(top-src-dir)/make/website.make \

website

This translates as:

make --no-builtin-rules config_make=./config.make \

top-src-dir=/home/phil/lilypond-git \

-f /home/phil/lilypond-git/make/website.make \

website

which has the effect of setting the variables config_make and top-src-dir and then pro-
cessing the file git/make/website.make with the target of website.

website.make starts with the following:

ifeq ($(WEBSITE_ONLY_BUILD),1)

which checks to see whether the variable WEBSITE_ONLY_BUILD was set to one on the command
line. This is only done for standalone website builds, not in the normal case. The result of the
test determines the value of some variables that are set. A number of other variables are set, in
order to establish locations of various files. An example is:

CREATE_VERSION=python $(script-dir)/create-version-itexi.py

The rule for website is:
website: website-texinfo website-css website-pictures website-examples web-post

http://amath.colorado.edu/documentation/LaTeX/reference/faq/bibtex.pdf
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cp $(SERVER_FILES)/favicon.ico $(OUT)/website

cp $(SERVER_FILES)/robots.txt $(OUT)/website

cp $(top-htaccess) $(OUT)/.htaccess

cp $(dir-htaccess) $(OUT)/website/.htaccess

so we see that this starts by running the rules for 5 other targets, then finishes by copying
some files. We’ll cover that later - first website-texinfo. That rule is:

website-texinfo: website-version website-xrefs website-bibs

for l in '' $(WEB_LANGS); do \

if test -n "$$l"; then \

langopt=--lang="$$l"; \

langsuf=.$$l; \

fi; \

$(TEXI2HTML) --prefix=index \

--split=section \

--I=$(top-src-dir)/Documentation/"$$l" \

--I=$(top-src-dir)/Documentation \

--I=$(OUT) \

$$langopt \

--init-file=$(texi2html-init-file) \

-D web_version \

--output=$(OUT)/"$$l" \

$(top-src-dir)/Documentation/"$$l"/web.texi ; \

ls $(OUT)/$$l/*.html | xargs grep -L \

'UNTRANSLATED NODE: IGNORE ME' | \

sed 's!$(OUT)/'$$l'/!!g' | xargs \

$(MASS_LINK) --prepend-suffix="$$langsuf" \

hard $(OUT)/$$l/ $(OUT)/website/ ; \

done

which therefore depends on website-version, website-xrefs and website-bibs.

website-version:

mkdir -p $(OUT)

$(CREATE_VERSION) $(top-src-dir) > $(OUT)/version.itexi

$(CREATE_WEBLINKS) $(top-src-dir) > $(OUT)/weblinks.itexi

which translates as:

mkdir -p out-website

python /home/phil/lilypond-git/scripts/build/create-version-itexi.py

/home/phil/lilypond-git > out-website/version.itexi

python /home/phil/lilypond-git/scripts/build/create-weblinks-itexi.py

/home/phil/lilypond-git > out-website/weblinks.itexi

So, we make out-website then send the output of create-version-itexi.py

to out-website/version.itexi and create-weblinks-itexi.py to
out-website/weblinks.itexi.

create-version-itexi.py parses the file VERSION in the top source dir. It contains:

PACKAGE_NAME=LilyPond

MAJOR_VERSION=2

MINOR_VERSION=15

PATCH_LEVEL=13

MY_PATCH_LEVEL=

VERSION_STABLE=2.14.2

VERSION_DEVEL=2.15.12
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currently. c-v-i.py parses this to:

@c ************************ Version numbers ************

@macro version

2.15.13

@end macro

@macro versionStable

2.14.2

@end macro

@macro versionDevel

2.15.12

@end macro

create-weblinks-itexi.py creates a load of texi macros (of the order of 1000) similar to:

@macro manualStableGlossaryPdf

@uref{../doc/v2.14/Documentation/music-glossary.pdf,Music glossary.pdf}

@end macro.

It loads its languages from langdefs.py, and therefore outputs the following unhelpful warning:

langdefs.py: warning: lilypond-doc gettext domain not found.

Next:

website-xrefs: website-version

for l in '' $(WEB_LANGS); do \

is the start of the rule, truncated for brevity. This loops through the languages to be used
on the website, processing some variables which I don’t fully understand, to run this command:

python /home/phil/lilypond-git/scripts/build/extract_texi_filenames.py \

-I /home/phil/lilypond-git/Documentation \

-I /home/phil/lilypond-git/Documentation/"$l" \

-I out-website -o out-website --split=node \

--known-missing-files= \

/home/phil/lilypond-git/scripts/build/website-known-missing-files.txt \

-q \

/home/phil/lilypond-git/Documentation/"$l"/web.texi ;\

There’s a good description of what extract_texi_filenames.py does at the top of the
script, but a shortened version is:

If this script is run on a file texifile.texi, it produces a file

texifile[.LANG].xref-map with tab-separated entries of the form

NODE\tFILENAME\tANCHOR.

An example from web.nl.xref-map is:

Inleiding Introduction Introduction

e-t-f.py follows the includes from document to document. We know some have not been
created yet, and known-missing-files option tells e-t-f.py which these are.

It then does this:

for m in $(MANUALS); do \

to run e-t-f.py against all of the manuals, in each language. Next:

website-bibs: website-version

BSTINPUTS=$(top-src-dir)/Documentation/web \

$(WEB_BIBS) -s web \

-s $(top-src-dir)/Documentation/lily-bib \

-o $(OUT)/others-did.itexi \
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$(quiet-flag) \

$(top-src-dir)/Documentation/web/others-did.bib

This is half the command. It runs bib2texi.py on 2 .bib files - others-did.bib and
we-wrote.bib. This converts bibliography files into texi files with bibtex.

Next the commands in the website-texinfo rule are run:

for l in '' $(WEB_LANGS); do \

run texi2html. This is the program that outputs the progress message (found in
Documentation/lilypond-texi2html.init):

Processing web site: []

It also outputs warning messages like:

WARNING: Unable to find node 'Řešenı́ potı́žı́' in book usage.

website-css:

cp $(top-src-dir)/Documentation/css/*.css $(OUT)/website

Copies 3 css files to out-website/website. Then:

website-pictures:

mkdir -p $(OUT)/website/pictures

if [ -d $(PICTURES) ]; \

then \

cp $(PICTURES)/* $(OUT)/website/pictures ; \

ln -sf website/pictures $(OUT)/pictures ;\

fi

which translates as:

if [ -d Documentation/pictures/out-www ]; \

then \

cp Documentation/pictures/out-www/* out-website/website/pictures ; \

ln -sf website/pictures out-website/pictures ;\

fi

i.e. it copies the contents of build/Documentation/pictures/out-www/* to
out-website/website/pictures. Unfortunately, the pictures are only created once make doc

has been run, so an initial run of make website copies nothing, and the pictures on the website
(e.g. the logo) do not exist. Next:

website-examples:

mkdir -p $(OUT)/website/ly-examples

if [ -d $(EXAMPLES) ]; \

then \

cp $(EXAMPLES)/* $(OUT)/website/ly-examples ; \

fi

translates to:

mkdir -p out-website/website/ly-examples

if [ -d Documentation/web/ly-examples/out-www ]; \

then \

cp Documentation/web/ly-examples/out-www/* out-website/website/ly-examples ; \

fi

This does the same with the LilyPond examples (found at http://lilypond.org/examples.
html). Again, these are actually only created by make doc (and since they are generated from
LilyPond source files, require a working LilyPond exe made with make). So this does nothing
initially. Then:

web-post:

$(WEB_POST) $(OUT)/website

http://lilypond.org/examples.html
http://lilypond.org/examples.html
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which is:
python /home/phil/lilypond-git/scripts/build/website_post.py out-website/website

which describes itself as:

This is web_post.py. This script deals with translations in the "make website"

target.

It also does a number of other things, including adding the Google tracker code and the
language selection footer. We’re now at the end of our story. The final 4 lines of the recipe for
website are:

cp $(SERVER_FILES)/favicon.ico $(OUT)/website

cp $(SERVER_FILES)/robots.txt $(OUT)/website

cp $(top-htaccess) $(OUT)/.htaccess

cp $(dir-htaccess) $(OUT)/website/.htaccess

The first translates as:
cp /home/phil/lilypond-git/Documentation/web/server/favicon.ico out-website/website

so we see these are just copying the support files for the web server.

website.make summary

Recipes in website.make:

• website: this is the "master" rule. It calls the other rules in order, then copies some extra
files around - see below for further of the process it produces.

• website-version: this calls the python scripts below:

•

scripts/build/create-version-itexi.py

This writes a @version, @versionStable, and @versionDevel based on the top-level
VERSIONS file, to out-website/version.itexi

•

scripts/build/create-weblinks-itexi.py

This creates a ton of macros in out-website/weblinks.itexi. Stuff like @down-
loadStableLinuxNormal, @downloadStableWidows, @stableDocsNotationPdf{},
@downloadDevelSourch-zh.

It’s quite monstrous because it deals with combinations of stable/devel, source/docs,
lang/lang/lang*10, etc.

• website-xrefs: creates files used for complicated "out-of-build" references to
out-website/*.xref-map

If you just write @ref{}, then all’s groovy and we wouldn’t need this. But if you write
@rlearning{}, then our custom texi2html init file needs to know about our custom xref file
format, which tells our custom texi2html init file how to create the link.

GP: we should have a separate @node to discuss xrefs. Also, take a quick look at a generated
xref file – it’s basically just a list of @node’s [sic teenager pluralization rule] from the file.

• website-bib: generates the bibliography texinfo files from the .bib files - in the case of the
website build these are others-did.bib and we-wrote.bib.

• website-texinfo: this is the main part; it calles texi2html to generate the actual html. It
also has a ton of options to texi2html to pass info to our custom init file.

The file actually built is called web.texi, and is either in the Documentation directory, or
a sub-directory specific to the language.

The options file is /Documentation/lilypond-texi2html.init. This contains *lots* of
option and configuration stuff, and also includes the line:

print STDERR "Initializing settings for web site: [$Texi2HTML::THISDOC{current_lang}]\n";
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This is where one of the console messages is generated.

We have somewhere between 2-4 different ways "to pass info to our custom init file". This
is highly Not Good (tm), but that’s how things work at the moment.

After texi2html, it does some black magick to deal with untranslated nodes in the trans-
lations. Despite writing that part, I can’t remember how it works. But in theory, you
could figure it out by copy&pasting each part of the command (by "part", I mean "stuff
before each | pipe"), substituting the variables, then looking at the text that’s output. For
example,

ls $(OUT)/$$l/*.html

is going to print a list of all html files, in all languages, in the build directory. Then more
stuff happens to each of those files (that’s what xargs does).

• website-css: just copies files to the build dir.

• website-pictures, website-examples: more file copies, with an if statement to handle
if you don’t have any generated pictures/examples.

• web-post: runs:

scripts/build/website_post.py

which, it adds the "this page is translated in klingon" to the bottom of html pages, and adds
the google analytics javascript. It also has hard-coded lilypond version numbers, which is
Bad (tm).

Here’s a summary of what gets called, in what order, when we run make website

website:

website-texinfo:

website-version:

creates version.itexi and weblinks.itexi

website-xrefs:

runs extract_texi_filenames.py

website-bibs:

creates bibliography files, described above

website-css:

copies css files

website-pictures:

copies pictures

website-examples:

copies examples

web-post:

runs website_post.py

Then some file copying
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13 Modifying the Emmentaler font

13.1 Overview of the Emmentaler font

Emmentaler was created specifically for use in LilyPond. The font consists of two sub-sets of
glyphs. “Feta”, used for clasical notation and “Parmesan”, used for Ancient notation. The
sources of which are all found in mf/*.mf.

The font is merged from a number of subfonts. Each subfont can contain at most 224 glyphs.
This is because each subfont is limited to a one-byte address space (256 glyphs maximum) and
we avoid the first 32 points in that address space, since they are non-printing control characters
in ASCII.

In LilyPond, glyphs are accessed by a ‘glyph name’, rather than by code point. Therefore,
the name of a glyph is significant.

Information about correctly creating glyphs is found in mf/README. Please make sure you
read and understand this file.

TODO – we should get mf/README automatically generated from texinfo source and in-
clude it here.

13.2 Font creation tools

The sources for Emmentaler are written in metafont. The definitive reference for metafont is
"The METAFONT book" – the source of which is available at CTAN.

mf2pt1 is used to create type 1 fonts from the metafont sources.

FontForge is used to postprocess the output of mf2pt1 and clean up details of the font. It
can also be used by a developer to display the resulting glyph shapes.

13.3 Adding a new font section

The font is divided into sections, each of which contains less than 224 glyphs. If more than 224
glyphs are included in a section, an error will be generated.

Each of the sections is contained in a separate .mf file. The files are named according to the
type of glyphs in that section.

When adding a new section, it will be necessary to add the following:

• The code for the glyphs, in a file <section-name>.mf

• Driver files used to create the font in different sizes

• An entry in the generic file used to create the font, or a new generic file

• If necessary, new entries in the GNUmakefile

• An entry in scripts/build/gen-emmentaler-scripts.py

See the examples in mf/ for more information.

13.4 Adding a new glyph

Adding a new glyph is done by modifying the .mf file to which the glyph will be added.

Necessary functions to draw the glyph can be added anywhere in the file, but it is standard
to put them immediately before the glyph definition.

The glyph definition begins with:

fet_beginchar ("glyph description", "glyphname");

with glyph description replaced with a short description of the glyph, and glyphname replaced
with the glyphname, which is chosen to comply with the naming rules in mf/README.
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The metafont code used to draw the glyph follows the fet_beginchar entry. The glyph is
finished with:

fet_endchar;

13.5 Building the changed font

In order to rebuild the font after making the changes, the existing font files must be deleted.
The simplest and quickest way to do this is to do:

rm mf/out/*

make

13.6 METAFONT formatting rules

There are special formatting rules for METAFONT files.

Tabs are used for the indentation of commands.

When a path contains more than two points, put each point on a separate line, with the
operator at the beginning of the line. The operators are indented to the same depth as the
initial point on the path using spaces. The indentation mechanism is illustrated below, with
‘------->’ indicating a tab character and any other indentation created using spaces.

def draw_something (test) =

------->if test:

------->------->fill z1

------->-------> -- z2

------->-------> -- z3

------->-------> .. cycle;

------->fi;

enddef;
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14 Administrative policies

This chapter discusses miscellaneous administrative issues which don’t fit anywhere else.

14.1 Meta-policy for this document

The Contributor’s Guide as a whole is still a work in progress, but some chapters are much more
complete than others. Chapters which are “almost finished” should not have major changes with-
out a discussion on -devel; in other chapters, a disorganized “wiki-style dump” of information
is encouraged.

Do not change (other than spelling mistakes) without discussion:

• Chapter 1 [Introduction to contributing], page 1,

• Chapter 3 [Working with source code], page 14,

Please dump info in an appropriate @section within these manuals, but discuss any large-scale
reorganization:

• Chapter 4 [Compiling], page 44,

• Chapter 5 [Documentation work], page 59,

• Chapter 8 [Issues], page 97,

• Chapter 9 [Regression tests], page 105,

• Chapter 10 [Programming work], page 111,

Totally disorganized; do whatever the mao you want:

• Chapter 6 [Website work], page 86,

• Chapter 7 [LSR work], page 91,

• Chapter 11 [Release work], page 143,

• Chapter 14 [Administrative policies], page 170,

14.2 Environment variables

Some maintenance scripts and instructions in this guide rely on the following environment vari-
ables. They should be predefined in LilyDev distribution (see Section 2.1 [LilyDev], page 5); if
you set up your own development environment, you can set them by appending these settings
to your ~/.bashrc (or whatever defines your default environment variables for the user account
for LilyPond development), then logging out and in (adapt directories to your setup):

LILYPOND_GIT=~/lilypond-git

export LILYPOND_GIT

LILYPOND_BUILD_DIR=~/lilypond-git/build

export LILYPOND_BUILD_DIR

The standard build and install procedure (with autogen.sh, configure, make, make

install, make doc . . . ) does not rely on them.

In addition, for working on the website, LILYPOND_WEB_MEDIA_GIT should be set to the
repository lilypond-extra, see [lilypond-extra], page 20.

14.3 Meisters

We have four primary jobs to help organize all our contributors:
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The Bug Meister

The Bug Meister’s responsibilities are:

• To organize the individual Bug Squad volunteers, making sure that each member is aware
of their responsibilities. See Section 8.2 [The Bug Squad], page 97.

• To train new Bug Squad volunteers in the Issue Tracker process. See Chapter 8 [Issues],
page 97.

• To have the final say on our policies for Issues and their classification. See Section 8.3 [Issue
classification], page 100.

Current Bug Meister: Colin Hall bug-lilypond@gnu.org

The Doc Meister

The Doc Meister’s responsibilities are:

• To train new volunteers in our Documentation style and policy, including organizing Lily-
Pond Snippet Repository (LSR) work.

• To organize the individual volunteers – who does what on which job – and to check that
everything is running smoothly.

• To have final say on any Documentation policy. See Section 5.5 [Documentation policy],
page 69.

Current Doc Meister: None

The Patch Meister

The Patch Meister’s responsibilities are:

• To keep track of all patches submitted for testing and review. This includes scanning the
bug and dev email lists looking for any patches submitted by ‘random’ contributors and
advising them on how to submit a patch for testing and review. See Section 3.3.6 [Uploading
a patch for review], page 27, and Section 3.3.7 [The patch review cycle], page 29.

• To makes sure that any patch submitted has a corresponding Issue Tracker and Rietveld
Issue created for it before it enters the testing and review process. See Chapter 8 [Issues],
page 97.

• Updates all Issue statuses for all patches that are currently in the testing and review process
periodically – currently every 3 - 4 days. See Section 8.5 [Patch handling], page 103.

☛ ✟

Note: The Patch Meister’s role is a purely administrative one and no
programming skill or judgement is assumed or required.
✡ ✠

Currently: James Lowe pkx@gnu.org

The Translation Meister

The Translation Meister’s responsibilities are:

• To train new documentation translators in the translation process. See Section 5.9 [Trans-
lating the documentation], page 75.

• To update the translation priority list and handle the merging of the translation branches
(in both directions).

• To have final say on any Translation management policies. See Section 5.9 [Translating the
documentation], page 75.

Currently: Francisco Vila translations@lilynet.net

mailto:bug-lilypond@gnu.org
mailto:pkx@gnu.org
mailto:translations@lilynet.net
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14.4 Managing Staging and Master branches with Patchy

14.4.1 Overview of Patchy

No programmatic skill is required to run Patchy; although knowledge of compiling LilyPond and
its documentation along with understanding how to configure the PATH environment of your
computer is required. See Chapter 3 [Working with source code], page 14.

The script lilypond-patchy-staging.py checks for any new commits in
remote/origin/staging, makes sure that the new HEAD compiles along with all
the LilyPond documentation. Then finally pushing to remote/origin/master. This script can
be run and left unattended, requiring no human intervention.

Patchy can also be configured to send emails after each successful (or unsuccessful) operation.
This is not a requirement and is turned off by default.

14.4.2 Patchy requirements

• A full local copy of the source code. See Chapter 3 [Working with source code], page 14.

• All the software needed for compiling LilyPond and the documentation. Unlike testing
patches, being able to build the full set of LilyPond’s documentation is required to be able
to test & push new commits. See Chapter 4 [Compiling], page 44.

• Commit access is required to test and push new commits, but a valid login to https://

sourceforge.net is not. See Section 3.4.9 [Commit access], page 33.

14.4.3 Installing Patchy

The Patchy scripts are not part of the LilyPond code base, but can be downloaded from https://

github.com/gperciva/lilypond-extra/ . The scripts and related Python libraries are all
located in the patches/ directory.

Alternatively, use git clone;

git clone https://github.com/gperciva/lilypond-extra/

This makes it simpler to update the scripts if any changes are ever made to them. Finally,
add the location of the patches/ directory to your PATH.

14.4.4 Configuring Patchy
☛ ✟

Note: It is recommended to create a new user on your computer specif-
ically to run the Patchy scripts as a security precaution and that this
user should not have any administrative privileges. Also do not set
password protection for your ssh key else you will not be able to run
the scripts unattended.
✡ ✠

1. Make sure the environment variables LILYPOND GIT and LILYPOND BUILD DIR are
configured appropriately. See Section 14.2 [Environment variables], page 170.

2. Manually run either the lilypond-patchy-staging.py script and when prompted:

Warning: using default config; please edit /home/joe/.lilypond-patchy-config

Are you sure that you want to continue with the default config? (y/[n])

Answer “n” and press enter.

The next time either of the scripts are run they will use the .lilypond-patchy-config

settings copied to your $HOME directory.

3. Manually edit the .lilypond-patchy-config file, located in your $HOME directory to change
any of the default settings.

https://sourceforge.net
https://sourceforge.net
https://github.com/gperciva/lilypond-extra/
https://github.com/gperciva/lilypond-extra/


Chapter 14: Administrative policies 173

These include:

• All make operations are run with;

extra_make_options = -j3 CPU_COUNT=3

See Section 4.5.2 [Saving time with the -j option], page 52,

• A complete build of all the LilyPond documentation is not performed;

patch_test_build_docs = no

• Each instance of either a patch test or commit test & push is logged in;

auto_compile_results_dir = ~/lilypond-auto-compile-results/

• Both scripts will perform their build operations in;

build_dir = /tmp/lilypond-autobuild/

The script creates a clones of staging and master branches (prefixed with test-) with a
third branch, called test-master-lock used as a check to protect against two or more instances
of Patchy being run locally at the same time.

14.4.5 Running the script

lilypond-patchy-staging.py is run without any arguments. It then checks to see if
remote/origin/staging is “further ahead” than remote/origin/master.

If there are no new differences between the two branches since the last run check, the script will
report something like this:

(UTC) Begin LilyPond compile, previous commit at 4726764cb591f622e7893407db0e7d42bcde90d9

Success: No new commits in staging

If there are any differences between the two branches since the last run check, (or if the script
cannot for any reason, locate the last instance of a commit that it checked) it will report
something like this:

(UTC) Begin LilyPond compile, previous commit at 4726764cb591f622e7893407db0e7d42bcde90d9

Merged staging, now at: 79e98a773b6570cfa28a15775a9dea3d3e54d6b5

Success: ./autogen.sh --noconfigure

Success: /tmp/lilypond-autobuild/configure --disable-optimising

...

and proceed with running make, make test and a make doc. Unlike test-patches.py if all
the tests pass, the script then pushes the changes to remote/origin/master.

...

Success: nice make clean

Success: nice make -j7 CPU_COUNT=7

Success: nice make test -j7 CPU_COUNT=7

Success: nice make doc -j7 CPU_COUNT=7

To ssh://joe@git.sv.gnu.org/srv/git/lilypond.git

79e98a7..4726764 test-staging -> master

Success: pushed to master
☛ ✟

Note: In the case where any of the lilypond-patchy-staging.py tests
fail, do not try to push your own fixes but report the failures to the
Developers List <lilypond-devel@gnu.org> for advice.
✡ ✠

14.4.6 Automating Patchy

To run as a cron job make sure you have;

[notification]

notify_non_action = no

in $HOME/.lilypond-patchy-config to avoid any unintentional email flooding:
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Assuming that Patchy run a user “patchy”, create a file called
$HOME/lilypond-patchy.cron, adapting it as necessary (the /2 means “run this
every 2 hours”):

02 0-23/2 * * * /home/patchy/lilypond-extra/patches/lilypond-patchy-staging.py
☛ ✟

Note: cron will not inherit environment variables so you must re-
define any variables inside $HOME/lilypond-patchy.cron. For in-
stance, LILYPOND GIT may need to be defined if git repository dir

is not correctly set in $HOME/.lilypond-patchy-config.
✡ ✠

Finally, apply the cron job (you may need superuser privileges for this):

crontab -u patchy /home/patchy/lilypond-patchy.cron

14.4.7 Troubleshooting Patchy

The following is a list of the most common messages that the scripts may report with explana-
tions.

this Git revision has already been pushed by an operator other than this Patchy.

• Another, remote, machine has already tested and pushed the new commits in staging.

• You may also see this if the auto-build files have been deleted and this computer has
previously already pushed the listed commit ID to master.

test-master-lock and PID entry exist but previous Patchy

run (PID xxxxx) died, resetting test-master-lock anyway.

A previous attempt was unsuccessful for some reason and the scripts were not able to tidy up
after themselves (for example if you manually halt the process by killing it or closing the terminal
you may have been running the script in). The test-master-lock branch was therefore not
able to be deleted cleanly however, nothing needs to be done the scripts will rebuild any tests
it needs to.

fatal: A branch named 'test-master-lock' already exists.

• There is another instance of Patchy running on your computer that is testing the same
tracker issue.

• A previous test attempt was unsuccessful for some reason and the scripts were not able to
tidy up after themselves (for example if you manually halt the testing process by killing it
or closing the terminal you may have been running the script in). The test-master-lock

branch was therefore not able to be deleted cleanly, in this case you must manually delete
the test-master-lock branch in your $LILYPOND_GIT directory.

git branch -d test-master-lock

It may be wise to also manually delete test-master and test-staging too, just to be safe.

*** FAILED STEP ***

merge from staging

Another instance (PID xxxxx) is already running.

This occurs when trying to run lilypond-patchy-staging.py when another instance of either
script is already running locally.

14.5 Administrative mailing list

A mailing list for administrative issues is maintained at lilypond-hackers@gnu.org.

This list is intended to be used for discussions that should be kept private. Therefore, the
archives are closed to the public.

Subscription to this list is limited to certain senior developers.



Chapter 14: Administrative policies 175

At the present time, the list is dormant.

Details about the criteria for membership, the types of discussion to take place on the list, and
other policies for the hackers list will be finalized during the Section 14.6 [Grand Organization
Project (GOP)], page 175.

14.6 Grand Organization Project (GOP)

GOP has two goals:

• Clarify the various development tasks by writing down the policies and techniques and/or
simplifying the tasks directly.

• Get more people involved in development: specifically, find people to do easy tasks to allow
advanced developers to concentrate on difficult tasks.

14.6.1 Motivation

Most readers are probably familiar with the LilyPond Grand Documentation Project, which ran
from Aug 2007 to Aug 2008. This project involved over 20 people and resulted in an almost
complete rewrite of the documentation. Most of those contributors were normal users who
decided to volunteer their time and effort to improve lilypond for everybody. By any measure,
it was a great success.

The Grand Organization Project aims to do the same thing with a larger scope – instead
of focusing purely on documentation, the project aims to improve all parts of LilyPond and its
community. Just as with GDP, the main goal is to encourage and train users to become more
involved.

If you have never contributed to an open-source project before – especially if you use Windows
or OSX and do not know how to program or compile programs – you may be wondering if there’s
anything you can do. Rest assured that you can help.

"Trickle-up" development

One of the reasons I’m organizing GOP is "trickle-up" development. The idea is this: doing
easy tasks frees up advanced developers to do harder tasks. Don’t ask "am I the best person for
this job"; instead, ask "am I capable of doing this job, so that the current person can do stuff I
can’t do?".

For example, consider lilypond’s poor handling of grace notes in conjunction with clef and
tempo changes. Fixing this will require a fair amount of code rewriting, and would take an
advanced developer a few weeks to do. It’s clearly beyond the scope of a normal user, so we
might as well sit back and do nothing, right?

No; we can help, indirectly. Suppose that our normal user starts answering more emails
on lilypond-user. This in turn means that documentation writers don’t need to answer those
emails, so they can spend more time improving the docs. I’ve noticed that all doc writers tackle
harder and harder subjects, and when they start writing docs on scheme programming and
advanced tweaks, they start contributing bug fixes to lilypond. Having people performing these
easy-to-moderate bug fixes frees up the advanced developers to work on the really hard stuff...
like rewriting the grace note code.

Having 1 more normal user answering emails on lilypond-user won’t have a dramatic ‘trickle-
up’ effect all by itself, of course. But if we had 8 users volunteering to answer emails, 6 users
starting to write documentation, and 2 users editing LSR... well, that would free up a lot of
current bug-fixing-capable contributors to focus on that, and we could start to make a real dent
in the number of bugs in lilypond. Quite apart from the eased workload, having that many new
helpers will provide a great moral boost!
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14.6.2 Ongoing jobs

Although GOP is a short-term project, the main goal is to train more people to handle ongoing
jobs. The more people doing these jobs, the lighter the work will be, and the more we can get
done with lilypond!

Also, it would be nice if we had at least one "replacement" / "understudy" for each role –
too many tasks are only being done by one person, so if that person goes on vacation or gets
very busy with other matters, work in that area grinds to a halt.

Jobs for normal users

• Consultant: LilyPond is sometimes critized for not listening to users, but whenever we
ask for opinions about specific issues, we never get enough feedback. This is somewhat
aggravating. We need a group of users to make a dedicated effort to test and give feedback.
If there’s new documentation, read it. If there’s an experimental binary, download it and
try compiling a score with it. If we’re trying to name a new command, think about it and
give serious suggestions.

• lilypond-user support: I think it would be nice if we had an official team of users helping
other users.

• LilyPond Report: Keeping a monthly newsletter running is a non-trivial task. A lot of work
is needed to organize it; it would be great if we could split up the work. One person could
write the Snippet of the Month, another person could do Quotes of the Month, another
person could do interviews, etc.

• Documentation: Although GDP (the Grand Documentation Project) did great work, there’s
still many tasks remaining.

• Translations: Keeping the documentation translations is a monumental task; we need all
the help we can get!

Jobs for advanced users for developers

• Git help for writers: We often receive reports of typos and minor text updates to the
documentation. It would be great if somebody could create properly-formatted patches for
these corrections.

Technical requirements: ability to run Section 2.1 [LilyDev], page 5.

• LSR editor: LSR contains many useful examples of lilypond, but some snippets are out of
date and need updating. Other snippets need to be advertized, and new snippets need to
be sorted. We could use another person to handle LSR.

Technical requirements: use of a web browser. LilyPond requirements: you should be
familiar with most of Notation chapters 1 and 2 (or be willing to read the docs to find out).

• Join the Frogs: "Frogs" are a team of bug-fixers (because frogs eat bugs, and you often find
them in Ponds of Lilies) and new feature implementors.

Technical requirements: development environment (such as Section 2.1 [LilyDev], page 5),
ability to read+write scheme and/or C++ code.

14.6.3 Policy decisions

There are a number of policy decisions – some of them fairly important – which we have been
postponing for a few years. We are now discussing them slowly and thoroughly; agenda and
exact proposals are online:

http://lilypond.org/~graham/gop/index.html

Below is a list of policies which are not “on the agenda” yet.

Note that the presence of an item on this list does not mean that everybody thinks that
something needs to be done. Inclusion in this simply means that one developer thinks that we

http://lilypond.org/~graham/gop/index.html
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should discuss it. We are not going to filter this list; if any developer thinks we should discuss
something, just add it to the bottom of the list. (the list is unsorted)

As GOP progresses, items from this list will be put on the agenda and removed from this
list. I generally try to have one month’s discussion planned in advance, but I may shuffle things
around to respond to any immediate problems in the developer community.

There are some item(s) not displayed here; these are questions that were posed to me pri-
vately, and I do not feel justified in discussing them publicly without the consent of the person(s)
that brought them up. They will initially be discussed privately on the lilypond-hackers mailing
list – but the first question will be "do we absolutely need to do this privately", and if not, the
discussion will take place on lilypond-devel like the other items.

In most policy discussions in lilypond over the past few years, the first half (or more) is wasted
arguing on the basis of incorrect or incomplete data; once all the relevant facts are brought to
light, the argument is generally resolved fairly quickly. In order to keep the GOP discussions
focused, each topic will be introduced with a collection of relevant facts and/or proposals. It
is, of course, impossible to predict exactly which facts will be relevant to the discussion – but
spending an hour or two collecting information could still save hours of discussion.

☛ ✟

Note: The estimated time required for "prep work", and the following
discussion, has been added to each item. At the moment, there is an
estimated 30 hours of prep work and 140 hours of discussion.
✡ ✠

• Patch reviewing: At the time of this writing, we have 23 (known) patches waiting for review.
Some from main developers; some from new developers. We desperately need more people
helping with lilypond, but ignoring patches is the best way to drive potential contributors
away. This is not good.

(prep: 2 hours. discuss: 10 hours)

• Official links to other organizations?: There’s something called the "software freedom con-
servancy", and in general, there’s a bunch of "umbrella organizations". Joining some of
these might give us more visibility, possibly leading to more users, more developers, maybe
even financial grants or use in schools, etc.

(prep: 2 hours. discuss: 5 hours)

• Issue tracking with google code: We use the google issue tracker, but this means that we
are relying on a commercial entity for a large part of our development. Would it be better
(safer in the long run) to use the savannah bug tracker?

(prep: 1 hour. discuss: 5 hours)

• Patch review tool: Rietveld is inconvenient in some respects: it requires a google account,
and there’s no way to see all patches relating to lilypond. Should we switch to something
like gerrit? https://sourceforge.net/p/testlilyissues/issues/1184/

(prep: 5 hours. discuss: 15 hours)

• Clarity for sponsorships: We currently do not advertize bounties and sponsorships on the
webpage. How much advertising do we want, and what type? Should we change the
"structure" / "framework" for bounties?

(prep: 2 hours. discuss: 10 hours)

• code readability: "Our aim when producing source code for LilyPond in whatever language
is that it should be totally comprehensible to a relatively inexperienced developer at the
second reading."

Rationale: - aids maintainability of code base - "second reading" so newer developers can
look up unfamiliar stuff - will help to keep things simple, even if the code is doing complex
stuff discourages "secret squirrel" coding, e.g. "how much functionality can I squeeze into

https://sourceforge.net/p/testlilyissues/issues/1184/


Chapter 14: Administrative policies 178

as few characters as possible" "comments are for wimps" - will aid not *discouraging* new
developers to join the project

(prep: 2 hours. discuss: 10 hours)

• C++ vs. scheme: what should be in scheme, what should be in C++, what can/should be
ported from one to the other, etc. Questions of maintainability, speed (especially considering
guile 2.0), and the amount of current material in either form, are important.

(prep: 5 hours. discuss: 15 hours)

• always make an issue number for patches: there is a proposal that we should always have
a google code issue number for every patch. This proposal is closely tied to our choice of
patch review tool; if we switch to a different tool (as suggested in a different proposal), this
proposal may become moot.

(prep: 1 hour. discuss: 5 hours)

• initalizer lists: shoudl we use initalizer lists for C++? AFAIK they make no difference for
built-in types, but there’s some weird case where it’s more efficient for objects, or something.

Probably not worth making this a weekly thing on its own, but we can probably wrap it
up with some other code-related questions.

(prep: 15 minutes. discuss: 3 hours)

14.6.4 Policy decisions (finished)

Here is a record the final decisions, along with links to the discussions.

14.6.4.1 GOP-PROP 1 - python formatting

We will follow the indentation described in PEP-8. http://www.python.org/dev/peps/

pep-0008/

• use 4 spaces per indentation level

• never mix tabs and spaces (for indentation)

• Code indented with a mixture of tabs and spaces should be converted to using spaces
exclusively

Once this is done, we should add python -tt to the build system to avoid such errors in
the future.

There should be absolutely no tab characters for indentation in any .py file in lilypond git.
All such files should be converted to use spaces only.

Discussions
https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00060.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00084.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00310.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00574.html

14.6.4.2 GOP-PROP 2 - mentors and frogs

Nothing much was decided. The list of responsibilities was slightly altered; see the new one in
Section 1.4 [Mentors], page 3. We should encourage more use of the Frogs mailing list. There’s
a list of contributor-mentor pairs in:

https://github.com/gperciva/lilypond-extra/blob/master/people/mentors.txt

That’s pretty much it.

Discussions
https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00311.html

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00060.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00084.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00310.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00574.html
https://github.com/gperciva/lilypond-extra/blob/master/people/mentors.txt
https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00311.html
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14.6.4.3 GOP-PROP 3 - C++ formatting

Speaking academically, C++ code style is a "solved problem". Let’s pick one of the existing
solutions, and let a computer deal with this. Humans should not waste their time, energy, and
creativity manually adding tabs or spaces to source code.

We have modified fixcc.py to use astyle, along with extra regex tweaks.

• the final script will be run blindly on the lilypond source code. We will accept whatever
formatting the final version of this script produces, with no manual tweaking.

• patches which have been run through this tool will not be rejected for style reasons. Any
code formatting “desires” which are not enforced by fixcc.py will not be considered
grounds for rejecting a patch.

• for now, this style will not be enforced. It is not cause for concern if patches which do not
follow the formatting done by fixcc.py are pushed. From time to time, Graham will run
the formatter on the entire code base, and commit the resulting changes.

In a few months, we will tighten up this policy item (with some sort of automatic processing),
but that is outside the scope of this policy item and is a matter for later discussion.

• after the proposal is accepted, we will leave some time for existing patches to be accepted
and pushed. The script was run on the source code on 2011 August 01.

GNU code

LilyPond is a GNU project, so it makes sense to follow the GNU coding standards. These
standards state:

We don’t think of these recommendations as requirements, because it causes no
problems for users if two different programs have different formatting styles.

But whatever style you use, please use it consistently, since a mixture of styles within
one program tends to look ugly. If you are contributing changes to an existing
program, please follow the style of that program.

(http://www.gnu.org/prep/standards/html_node/Formatting.html)

With that in mind, we do not think that we must blindly follow the formatting given by the
currrent version of Emacs.

Implementation notes

We can avoid some of the style change pollution in git history by ignoring whitespaces changes:

git diff -w

Discussions
https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00526.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00796.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00200.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00525.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00751.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00751.html

14.6.4.4 GOP-PROP 4 - lessons from 2.14

History

A brief history of releases:

date (YYYY-MM-
DD)

version comment

2008-10-28 2.11.63 nobody checking regtests

http://www.gnu.org/prep/standards/html_node/Formatting.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00526.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00796.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00200.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00525.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00751.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00751.html
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2008-11-17 2.11.64
2008-11-29 2.11.65
2008-12-23 2.12.0
2009-01-01 somewhere around here,

Graham becomes officially
release manager, but Han-
Wen still builds the actual
releases

2009-01-01 2.12.1
2009-01-25 2.12.2
2009-02-28 2.13.0
2009-06-01 2.13.1 note jump in time!
2009-06-27 2.13.2 first Graham release?
2009-07-03 2.13.3
2009-09-09 Graham arrives in Glas-

gow, gets a powerful desk-
top computer, and be-
gins serious work on GUB
(sending bug reports to
Jan). It takes approx-
imately 100 hours until
GUB is stable enough to
make regular releases.

2009-09-24 2.13.4
2009-10-02 2.13.5
2009-10-22 2.13.6
2009-11-05 2.13.7
...
2010-01-13 2.12.3
...
2010-03-19 2.13.16 Bug squad starts doing a

few regtest comparisons,
but IIRC the effort dies
out after a few weeks
(BLUE)

...
2010-08-04 2.13.29 Phil starts checking

regtests (BLUE)

...
2011-01-12 2.13.46 release candidate 1

(GREEN)

...
2011-05-30 2.13.63 release candidate 7

(GREEN)

2011-06-06 2.14.0

Carl’s analysis of the bugs

A csv spreadsheet is available.

https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00852.html

lilypond-issues-analysis.csv

lilypond-issues-analysis-trim-duplicates.csv

https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00852.html
lilypond-issues-analysis.csv
lilypond-issues-analysis-trim-duplicates.csv
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There 148 issues marked with Priority=Critical in the tracker.

I’ve done an analysis, and it looks to me like there was initially a backlog of critical issues
that weren’t fixed, and little work was being done to eliminate critical issues.

Somewhere about 2010-08-01, critical issues started to disappear, but occasional new ones
appeared.

There were a couple of major changes that introduced unanticipated regressions (new spacing
code, beam collision avoidance). These produced more than the expected number of regressions.

It appears to me that we didn’t really get serious about eliminating critical bugs until about
2010-06-15 or so. After that point, the number of critical bugs more-or-less steadily decreased
until we got to a release candidate.

Of particular interest, the first release candidate of 2.14 was released on 2011-01-12. Over
the next 10 days, about a dozen bugs were reported and fixed. Release candidate 2 came out on
2011-02-09. No surge of bugs occurred with this release. Candidate 3 came out on 2011-03-13;
we got 2 bugs per week. Candidate 4 came out on 2011-03-29; 2 new bugs. Candidate 6 came
out on 2011-04-07. We got a couple of bugs per week.

Notes, commentary, and opinions

Han-Wen: Overall, I think this cycle took too long

Mike: I agree

Graham: +1

Discussions
https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00797.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00364.html

14.6.4.5 GOP-PROP 5 - build system output (not accepted)

This proposal was too broad; after a month of discussion, Graham withdrew the proposal.
Portions of it will be introduced in later proposals.

Discussions
https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00320.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00527.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00753.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg01042.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00116.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00310.html

14.6.4.6 GOP-PROP 6 - private mailing list

Potentially sensitive or private matters will be referred to Graham. He will then decide who
should discuss the matter on an ad-hoc basis, and forward or CC them on future emails.

For emphasis, the project administrators are Han-Wen, Jan, and Graham; those three will
always be CC’d on any important discussions.

The lilypond-hackers mailing list will be removed.

History

There is some unhappy history about this idea in our development community:

http://lists.gnu.org/archive/html/lilypond-devel/2010-09/msg00178.html

http://web.archive.org/web/20110325004849/http://news.lilynet.net/spip.

php?article121

http://lists.gnu.org/archive/html/lilypond-devel/2010-11/msg00076.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-06/msg00797.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00364.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00320.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00527.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00753.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg01042.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00116.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00310.html
http://lists.gnu.org/archive/html/lilypond-devel/2010-09/msg00178.html
http://web.archive.org/web/20110325004849/http://news.lilynet.net/spip.php?article121
http://web.archive.org/web/20110325004849/http://news.lilynet.net/spip.php?article121
http://lists.gnu.org/archive/html/lilypond-devel/2010-11/msg00076.html
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Other projects

The idea of private mailing lists is hardly uncommon in open-source software. For example,

http://lwn.net/Articles/394660/ about debian-private

http://subversion.apache.org/mailing-lists.html private@

http://www.freebsd.org/administration.html#t-core

http://foundation.gnome.org/legal/ board members pledge

to keep certain matters confidential

every security team of every GNU/Linux distribution and OS

In fact, Karl Fogel’s “Producing Open Source Software” explicitly suggests a private mailing
list for some circumstances:

[on granting commit/push access to a contributor]

But here is one of the rare instances where secrecy is

appropriate. You can't have votes about potential committers

posted to a public mailing list, because the candidate's feelings

(and reputation) could be hurt.

http://producingoss.com/en/consensus-democracy.html#electorate

Board of governers, voting, etc?

Many projects have an official board of directors, or a list of “core developers”, with set term
limits and elections and stuff.

I don’t think that we’re that big. I think we’re still small enough, and there’s enough trust
and consensus decisions, that we can avoid that. I would rather that we kept on going with
trust+consensus for at least the next 2-3 years, and spent more time+energy on bug fixes and
new features instead of administrative stuff.

Project administrators are Han-Wen, Jan, and Graham.

Discussions
https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00783.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg01004.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00117.html

14.6.4.7 GOP-PROP 7 - developers as resources

We shall treat developers (and contributors) as Independent volunteers: each person does what-
ever they want, whenever they want. We have busy careers and lives; we make no expectations
of action from anybody (with the exception of the 6 people in “Meister” positions).

Discussions
https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg01092.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00087.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00497.html

14.6.4.8 GOP-PROP 8 - issue priorities

We will delete the “priority” field of the issue tracker altogether. The “type” system will be
tweaked.

Type-critical:

• a reproducible failure to build either make or make doc, from an empty build tree, in a first
run, if configure does not report any errors.

http://lwn.net/Articles/394660/
http://subversion.apache.org/mailing-lists.html
http://www.freebsd.org/administration.html#t-core
http://foundation.gnome.org/legal/
http://producingoss.com/en/consensus-democracy.html#electorate
https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg00783.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg01004.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00117.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-07/msg01092.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00087.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00497.html
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• any program behaviour which is unintentionally worse than the previous stable version or
the current development version. Developers may always use the “this is intentional”, or
even the “this is an unavoidable effect of an improvement in another area”, reason to move
this to a different type.

• anything which stops contributors from helping out (e.g. lily-git.tcl not working, source
tree(s) not being available, LilyDev being unable to compile git master, inaccurate instruc-
tions in the Contributor’s Guide 2 Quick start).

To limit this scope of this point, we will assume that the contributor is using the latest
LilyDev and has read the relevant part(s) of the Contributor’s Guide. Problems in other
chapters of the CG are not sufficient to qualify as Type-Critical.

More new/changed types and labels

Unless otherwise specified, the current types and labels will continue to be used. The new types
introduced by this proposal are:

• Type-crash: any segfault, regardless of what the input file looks like or which options are
given. Disclaimer: this might not be possible in some cases, for example certain guile
programs (we certainly can’t predict if a piece of scheme will ever stop running, i.e. the
halting problem), or if we rely on other programs (i.e. ghostscript). If there are any such
cases that make segfault-prevention impossible, we will document those exceptions (and
the issue will remain as a "crash" instead of "documentation" until the warning has been
pushed).

• Type-maintainability: anything which makes it difficult for serious contributors to help out
(e.g. difficult to find the relevant source tree(s), confusing policies, problems with automatic
indentation tools, etc).

• Type-ugly: replaces Type-collision, and it will include things like bad slurs in addition to
actual collision.

A new label will be added:

• (label) Needs evidence: it is not clear what the correct output should look like. We need
scans, references, examples, etc.

Reminding users about stars

We can remind users that they can “star” an issue to indicate that they care about it. Since
we resolved to treat developers as independent volunteers, there is no expectation that anybody
will look at those stars, but if any developer want to organize their work schedule according to
the stars, they are welcome to do so.

Discussions
https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00019.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00277.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00413.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00624.html

14.6.4.9 GOP-PROP 9 - behavior of make doc

If there are build problems, then it should be easier to find out why it’s failing. This will be
achieved with log files, as well as possibly including scripts which automatically display portions
of those log files for a failing build.

We will also add targets for building a specific manual (for quick+easy checking of doc work),
as well as for building all documentation in a specific language (either English or a translated
language).

https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00019.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00277.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00413.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00624.html
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When you run make doc,

• All output will be saved to various log files, with the exception of output directly from
make(1).

Note that make(1) refers to a specific executable file on unix computers, and is not a general
term for the build system.

• By default, no other output will be displayed on the console, with one exception: if a build
fails, we might display some portion(s) of log file(s) which give useful clues about the reason
for the failure.

The user may optionally request additional output to be printed; this is controlled with the
VERBOSE=x flag. In such cases, all output will still be written to log files; the console output
is strictly additional to the log files.

• Logfiles from calling lilypond (as part of lilypond-book) will go in the relevant
$LILYPOND_BUILD_DIR/out/lybook-db/12/lily-123456.log file. All other logfiles will
go in the $LILYPOND_BUILD_DIR/logfiles/ directory.

A single make doc will therefore result in hundreds of log files. Log files produced from
individual lilypond runs are not under our control; apart from that, I anticipate having one
or two dozen log files. As long as it is clear which log file is associated with which opera-
tion(s), I think this is entirely appropriate. The precise implementation will be discussed
for specific patches as they appear.

• Both stderr and stdout will be saved in *.log. The order of lines from these streams should
be preserved.

• There will be no additional “progress messages” during the build process. If you run make

--silent, a non-failing build should print absolutely nothing to the screen.

• Assuming that the loglevels patch is accepted, lilypond (inside lilypond-book) will be run
with –loglevel=WARN. http://codereview.appspot.com/4822055/

• Ideally, a failing build should provide hints about the reason why it failed, or at least hints
about which log file(s) to examine.

If this proposal is accepted, none of these policies will be assumed to apply to any other
aspect of the build system. Policies for any other aspect of the build system will be discussed
in separate proposals.

Don’t cause more build problems

However, there is a danger in this approach, that vital error messages can also be lost, thus
preventing the cause of the failure of a make being found. We therefore need to be exceptionally
careful to move cautiously, include plenty of tests, and give time for people to experiment/find
problems in each stage before proceeding to the next stage.

This will be done by starting from individual lilypond calls within lilypond-book, and slowly
moving to “larger” targets of the build system – after the individual lilypond calls are are
producing the appropriate amount of output and this is saved in the right place and we can
automatically isolate parts of a failing build, we will work on lilypond-book in general, and only
then will we look at the build system itself.

Implementation notes

There is an existing make variable QUIET BUILD, which alter the amount of output
being displayed ( http: / / lilypond . org / doc / v2 . 15 / Documentation / contributor /
useful-make-variables ). We are not planning on keeping this make variable.

The standard way for GNU packages to give more output is with a V=x option. Presumably
this is done by increasing x? If we support this option, we should still write log files; we would
simply print more of the info in those log files to screen.

http://codereview.appspot.com/4822055/
 http://lilypond.org/doc/v2.15/Documentation/contributor/useful-make-variables
 http://lilypond.org/doc/v2.15/Documentation/contributor/useful-make-variables
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The command tee may be useful to write to a file and display to stdout (in the case of
VERBOSE).

Discussions
https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00378.html

https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00703.html

14.7 Grand LilyPond Input Syntax Standardization (GLISS)

Summary

• Start: sortly after 2.14 comes out, which is currently estimated to happen in January 2011.

• Length: 6-12 months. We’re not going to rush this.

• Goal: define an input which we commit to being machine-updateable for the forseeable
future. Any future patches which change the syntax in a non-convert-ly-able format will be
rejected. (subject to the limitations, below) Once this is finished, we will release lilypond
3.0.

The Problem

One of the biggest complaints people have with lilypond – other than silly thing like "there’s no
gui" – is the changing syntax. Now, inventing a language or standards is difficult. If you set it
in stone too soon, you risk being stuck with decisions which may limit matters. If you keep on
updating the syntax, interaction with older data (and other programs!) becomes complex.

Scope and Limitations

• tweaks will not be included. Anything with \override, \set, \overrideProperty, \tweak,
\revert, \unset... including even those command names themselves... is still fair game for
NOT SMART convert-ly updates.

• other than that, everything is on the table. Is it a problem to have the tagline inside
\header? What should the default behavior of \include be?

• we need to get standards for command names. This will help users remember them, and
reduce the options for future names (and potential renamings later on). \commandOn
and \commandOff seem to work well (should we *always* have an Off command?), but
what about the "command" part? Should it be \nounVerbOn, or \verbNounOn ? Or
\verbNotesWithExtraInformationOn ?

• we need standards for the location of commands. Ligature brackets, I’m looking at you.
(non-postfix notation must die!)

• this Grand Project doesn’t affect whether we have a 2.16 or not. The main problem will be
deciding what to do (with a bit of messiness anticipated for \tuplet); we should definitely
release a 2.16 before merging any of these changes.

• we obviously can’t /guarantee/ that we’ll /never/ make any non-convert-ly changes in the
basic format. But we *can* guarantee that such changes would force lilypond 4.0, and that
we would only do so for overwhelmingly good reasons.

Workflow

• We’re going to have lots and lots of emails flying around. The vast majority won’t really
fit into either -devel or -user, so we’ll use a list devoted to syntax issues.

• Once we have a serious proposal that gained general acceptance from the separate syntax
mailing list, I’ll bring it to -devel. We’re not going to make any changes without discussing
it on -devel, but if we’re going to have huge threads about English grammar and silly ideas,

https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00378.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00703.html
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and I don’t want to clutter up -devel. Once whatever chaotic silliness on the syntax list is
settled down, I’ll bring the ideas to -devel.

• as with GDP, I’ll moderate the discussion. Not as with mailist moderation, but rather by
introducing issues at specific times. We don’t want a free-for-all discussion of all parts of
the syntax at once; nothing will get resolved.

• Whenever possible, we’ll decide on policies at the highest level of abstraction. For example,
consider \numericTimeSignature, \slurUp, \xNotesOn, \startTextSpan, and \verylongfer-
mata. One of them starts with the name of the notation first (slur). One has an abbreviation
(x instead of cross). One has the verb at the end (On), another has it at the beginning
(start). The adjective can come at the beginning (numeric, x) or end (Up). Most are in
camelCase, but one isn’t (verylongfermata).

• Instead of arguing about each individual command, we’ll decide on abstract questions.
Should each command begin the notation-noun, or the verb? Should all commands be in
camelCase, or should we make everything other than articulations in camelCase but make
articulations all lower-case? Are abbreviations allowed?

• Once we’ve answered such fundamental questions, most of the syntax should fall into place
pretty easily. There might be a few odd questions left ("is it a span, or a spanner?"), but
those can be settled fairly quickly.

Implementation

Nothing until the project is finished, then we declare the next stable release (2.16.0 or 2.18.0 ?)
to be the final 2.x version, release it, then apply all the GLISS syntax changes and start testing
a beta for 3.0 a week or two later.

Discussion

Don’t respond to any of the specifics yet. Yes, we all have our pet irritations (like "what’s up
with \paper and \layout?!"). There will be plenty of time to discuss them once GLISS starts.

That said, we have a list of specific items that people really wanted to have written down.
See Section 14.7.1 [Specific GLISS issues], page 186.

14.7.1 Specific GLISS issues

• add regtests for every piece of syntax (not one-command-per-file, but making a few files
which, between them, use every single piece of syntax.) This is a great test for convert-ly.

• should GLISS cover suggested conventions? (indentation, one-bar-per-line, etc – the kind
of stuff we list for the lilypond formatting in the docs ?)

• how much (if any) syntactic sugar should we add? i.e.

\instrumentName #'foo

% instead of

\set Staff.instrumentName

? Carl: maybe yes, Neil: no. (for example, it fails for pianostaff)

• the values that are used as arguments to common used overrides. Sometimes they are a
symbol (e.g. #’around), sometimes a predefined variable referring to a Scheme value or
object (e.g. #LEFT, #all-visible ). The main trouble is that for novice users it is not clear
when there should be an apostrophe and when not.

• When do we need -\command and when is it just \command ?

• Command-line options to the lilypond binary. -dfoo counts as a tweak; we won’t be trying
to pin those down.

•

\layout {
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\context { \Score

% vs.

\layout {

\context {

\Score

• If would be pedagogically simpler to realize this difference if the syntax was separate if you
define a context from scratch (as is the case with \RemoveEmptyStaffContext) or if it’s
defined by adding onto an existing context. For example, a syntax like

\context{

% Copy the current settings of the Staff context:

\use Staff

% do whatever additional settings

}

%%% could be used to distinguish from

\context{

% Take settings from a variable:

\Variable

% do whatever additional settings

}

%%% and

\context{

% Start from scratch:

\type ...

\name ...

\consists ...

...

}

• Capitalization of identifiers: \VoiceOne ?

•

%%% Allow

{ music expression } * 4

%%% instead of

\repeat unfold 4 { music expression }

? patch here:
http://lists.gnu.org/archive/html/lilypond-devel/2010-04/msg00467.html

• Personally, I find it easier to understand when there’s a repeated 8 in the half-bar position;
it’s much easier to see that you have two groups of 4:

c8 c c c c8 c c c

%%% instead of one group of eight:

c8 c c c c c c c

• trivially simple bar-lines:

c1 | c1 |

encourage, allow, or discourage, or disallow?

• indentation of \\ inside a {} construct.

• barline checks at the end of line should be preceded by at least 2 spaces? barline checks
should line up if possible (i.e. if you can use less than 4, 8, X empty spaces before a barline
check to make them line up?)

http://lists.gnu.org/archive/html/lilypond-devel/2010-04/msg00467.html
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• Why doesn’t \transpose respect \relative mode?

• on \score vs. \new Score

But in the light of a consistent syntax and semantic, I see no reason (from the users POV)
to disallow it. After all, the real top-level context is a \book {}, isn’t it, and I don’t see a
point in disallowing a \new Score construct just like \new Staff.

From a syntactical POV, I see the following pros for \new Score: - You can write \with
{ ... } for every other context but \Score, which (for consistency) should also work with
\new Score. - When there’s a \new Foo Bar, there’s also a \context Foo Bar, which makes
the same as a parallel instantiation of all Bar’s. - [Quoting Rune from http://www.

mail-archive.com/lilypond-devel@gnu.org/msg14713.html "I know that the \score-
statement is a syntactical construct, but I think it would be nice to hide this fact from the
users. I think we could make the use of score-block much more intuitive if changing the
syntax to \new \Score and adding an implicit sequential-statement to the score."

• Discussion on https://sourceforge.net/p/testlilyissues/issues/1322/ about \new
vs. \context.

• Let users add their own items to the parser? comment 11 on: https://sourceforge.net/
p/testlilyissues/issues/1322/

• should engravers be pluralized (note heads engraver) or not (note head engraver) ?

• should we allow numbers in identifier names? Issue: https://sourceforge.net/p/

testlilyissues/issues/1670/

• should we officially allow accented characters? in general, how do we feel about utf-8 stuff?

• for the sake of completeness/simplicity, what about *disallowing* the "one-note" form of a
music expression? i.e. only allowing stuff like

\transpose c d { e1 }

\transpose c d << e1 >>

and never allowing

\transpose c d e1

• What should be the officially encouraged way of writing music for transposing instruments?
Maybe it should be simplified? See http://lists.gnu.org/archive/html/lilypond-user/2011-
07/msg00130.html

14.8 Unsorted policies

Language-specific mailing lists

A translator can ask for an official lilypond-xy mailing list once they’ve finished all “priority 1”
translation items.

Performing yearly copyright update (“grand-replace”)

At the start of each year, copyright notices for all source files should be refreshed by running
the following command from the top of the source tree:

make grand-replace

Internally, this invokes the script scripts/build/grand-replace.py, which performs a reg-
ular expression substitution for old-year -> new-year wherever it finds a valid copyright notice.

Note that snapshots of third party files such as texinfo.tex should not be included in
the automatic update; grand-replace.py ignores these files if they are listed in the variable
copied_files.

http://www.mail-archive.com/lilypond-devel@gnu.org/msg14713.html
http://www.mail-archive.com/lilypond-devel@gnu.org/msg14713.html
https://sourceforge.net/p/testlilyissues/issues/1322/
https://sourceforge.net/p/testlilyissues/issues/1322/
https://sourceforge.net/p/testlilyissues/issues/1322/
https://sourceforge.net/p/testlilyissues/issues/1670/
https://sourceforge.net/p/testlilyissues/issues/1670/
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Push git access

Git access is given out when a contributor has a significant record of patches being accepted
without problems. If existing developers are tired of pushing patches for a contributor, we’ll
discuss giving them push access. Unsolicited requests from contributors for access will almost
always be turned down.
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Appendix A LilyPond grammar

This appendix contains a description of the LilyPond grammar, as output from the parser.

Grammar

1 start_symbol: lilypond

3 | "#{" embedded_lilypond

4 lilypond: %empty

5 | lilypond toplevel_expression

6 | lilypond assignment

7 | lilypond error

8 | lilypond "\version-error"

9 toplevel_expression: header_block

10 | book_block

11 | bookpart_block

12 | BOOK_IDENTIFIER

13 | score_block

14 | composite_music

15 | full_markup

16 | full_markup_list

17 | SCM_TOKEN

18 | embedded_scm_active

19 | output_def

20 lookup: LOOKUP_IDENTIFIER

21 | LOOKUP_IDENTIFIER '.' symbol_list_rev

22 embedded_scm_bare: SCM_TOKEN

23 | SCM_IDENTIFIER

24 embedded_scm_active: SCM_IDENTIFIER

25 | scm_function_call

26 | lookup

27 embedded_scm_bare_arg: SCM_ARG

28 | SCM_TOKEN

29 | FRACTION

30 | partial_markup

31 | full_markup_list

32 | context_modification

33 | header_block

34 | score_block

35 | context_def_spec_block

36 | book_block

37 | bookpart_block

38 | output_def

39 | lookup

40 embedded_scm: embedded_scm_bare

41 | scm_function_call
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42 | lookup

43 embedded_scm_arg: embedded_scm_bare_arg

44 | scm_function_call

45 | music_assign

46 scm_function_call: SCM_FUNCTION function_arglist

47 embedded_lilypond_number: '-' embedded_lilypond_number

48 | bare_number_common

49 | UNSIGNED NUMBER_IDENTIFIER

50 embedded_lilypond: %empty

51 | identifier_init_nonumber

52 | embedded_lilypond_number

53 | post_event

54 | multiplied_duration post_events

55 | music_embedded music_embedded music_list

56 | error

57 | "\version-error" embedded_lilypond

58 lilypond_header_body: %empty

59 | lilypond_header_body assignment

60 | lilypond_header_body SCM_TOKEN

61 | lilypond_header_body embedded_scm_active

62 lilypond_header: "\header" '{' lilypond_header_body '}'

64 header_block: lilypond_header

65 assignment_id: STRING

66 | SYMBOL

67 assignment: assignment_id '=' identifier_init

68 | assignment_id '.' property_path '=' identifier_init

69 | assignment_id ',' property_path '=' identifier_init

70 | markup_mode_word '=' identifier_init

71 identifier_init: identifier_init_nonumber

72 | number_expression

73 | symbol_list_part_bare '.' property_path

74 | symbol_list_part_bare ',' property_path

75 | post_event_nofinger post_events

76 identifier_init_nonumber: header_block

77 | score_block

78 | book_block

79 | bookpart_block

80 | output_def

81 | context_def_spec_block

82 | music_assign

83 | pitch_or_music
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84 | FRACTION

85 | string

86 | embedded_scm

87 | partial_markup

88 | full_markup_list

89 | context_modification

90 | partial_function "\etc"

91 partial_function_scriptable: MUSIC_FUNCTION function_arglist_partial

92 | EVENT_FUNCTION function_arglist_partial

93 | SCM_FUNCTION function_arglist_partial

94 | MUSIC_FUNCTION

"scheme?"

function_arglist_optional

partial_function

95 | EVENT_FUNCTION

"scheme?"

function_arglist_optional

partial_function

96 | SCM_FUNCTION

"scheme?"

function_arglist_optional

partial_function

97 | MUSIC_FUNCTION

"optional?"

"scheme?"

function_arglist_nonbackup

partial_function

98 | EVENT_FUNCTION

"optional?"

"scheme?"

function_arglist_nonbackup

partial_function

99 | SCM_FUNCTION

"optional?"

"scheme?"

function_arglist_nonbackup

partial_function

100 partial_function: partial_function_scriptable

101 | "\override" grob_prop_path '='

102 | "\set" context_prop_spec '='

103 | "\override" grob_prop_path '=' partial_function

104 | "\set" context_prop_spec '=' partial_function

105 | script_dir markup_mode markup_partial_function

106 | script_dir partial_function_scriptable

107 | script_dir

108 context_def_spec_block: "\context" '{' context_def_spec_body '}'

109 context_mod_arg: embedded_scm

111 | composite_music
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112 context_def_spec_body: %empty

113 | context_def_spec_body context_mod

114 | context_def_spec_body context_modification

115 | context_def_spec_body context_mod_arg

116 book_block: "\book" '{' book_body '}'

117 book_body: %empty

118 | BOOK_IDENTIFIER

119 | book_body paper_block

120 | book_body bookpart_block

121 | book_body score_block

122 | book_body composite_music

123 | book_body full_markup

124 | book_body full_markup_list

125 | book_body SCM_TOKEN

126 | book_body embedded_scm_active

128 | book_body lilypond_header

129 | book_body error

130 bookpart_block: "\bookpart" '{' bookpart_body '}'

131 bookpart_body: %empty

132 | BOOK_IDENTIFIER

133 | bookpart_body paper_block

134 | bookpart_body score_block

135 | bookpart_body composite_music

136 | bookpart_body full_markup

137 | bookpart_body full_markup_list

138 | bookpart_body SCM_TOKEN

139 | bookpart_body embedded_scm_active

141 | bookpart_body lilypond_header

142 | bookpart_body error

143 score_block: "\score" '{' score_body '}'

144 score_body: score_items

145 | score_body error

146 score_item: embedded_scm

147 | music

148 | output_def

149 score_items: %empty

150 | score_items score_item

152 | score_items lilypond_header

153 paper_block: output_def

154 output_def: output_def_body '}'
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155 output_def_head: "\paper"

156 | "\midi"

157 | "\layout"

158 output_def_head_with_mode_switch: output_def_head

159 music_or_context_def: music_assign

160 | context_def_spec_block

161 output_def_body: output_def_head_with_mode_switch '{'

162 | output_def_body assignment

163 | output_def_body embedded_scm_active

164 | output_def_body SCM_TOKEN

166 | output_def_body music_or_context_def

167 | output_def_body error

168 tempo_event: "\tempo" steno_duration '=' tempo_range

169 | "\tempo" text steno_duration '=' tempo_range

170 | "\tempo" text

171 music_list: %empty

172 | music_list music_embedded

173 | music_list error

174 braced_music_list: '{' music_list '}'

175 music: music_assign

176 | lyric_element_music

177 | pitch_as_music

178 pitch_as_music: pitch_or_music

179 music_embedded: music

180 | post_event

181 | music_embedded_backup

182 | music_embedded_backup

"(backed-up?)"

lyric_element_music

183 | multiplied_duration post_events

184 music_embedded_backup: embedded_scm

185 music_assign: simple_music

186 | composite_music

187 repeated_music: "\repeat" simple_string unsigned_number music

188 | "\repeat"

simple_string

unsigned_number

music

"\alternative"

braced_music_list
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189 sequential_music: "\sequential" braced_music_list

190 | braced_music_list

191 simultaneous_music: "\simultaneous" braced_music_list

192 | "<<" music_list ">>"

193 simple_music: event_chord

194 | music_property_def

195 | context_change

197 context_modification: "\with" '{' context_mod_list '}'

198 | "\with" context_modification_arg

199 context_modification_arg: embedded_scm

200 | MUSIC_IDENTIFIER

201 optional_context_mods: context_modification_mods_list

202 context_modification_mods_list: %empty

203 | context_modification_mods_list

context_modification

204 context_mod_list: %empty

205 | context_mod_list context_mod

206 | context_mod_list context_mod_arg

207 context_prefix: "\context" symbol optional_id optional_context_mods

208 | "\new" symbol optional_id optional_context_mods

209 new_lyrics: "\addlyrics" optional_context_mods lyric_mode_music

210 | new_lyrics

"\addlyrics"

optional_context_mods

lyric_mode_music

211 basic_music: music_function_call

212 | repeated_music

213 | music_bare

214 | "\lyricsto" simple_string lyric_mode_music

215 | "\lyricsto" symbol '=' simple_string lyric_mode_music

216 contextable_music: basic_music

217 | pitch_as_music

218 | event_chord

219 contexted_basic_music: context_prefix contextable_music new_lyrics

220 | context_prefix contextable_music

221 | context_prefix contexted_basic_music

222 composite_music: basic_music

223 | contexted_basic_music
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224 | basic_music new_lyrics

225 music_bare: mode_changed_music

226 | MUSIC_IDENTIFIER

227 | grouped_music_list

228 grouped_music_list: simultaneous_music

229 | sequential_music

230 symbol_list_arg: SYMBOL_LIST

231 | SYMBOL_LIST '.' symbol_list_rev

232 | SYMBOL_LIST ',' symbol_list_rev

233 symbol_list_rev: symbol_list_part

234 | symbol_list_rev '.' symbol_list_part

235 | symbol_list_rev ',' symbol_list_part

236 symbol_list_part: symbol_list_part_bare

237 | embedded_scm_bare

238 symbol_list_element: STRING

239 | UNSIGNED

240 symbol_list_part_bare: SYMBOL

241 | symbol_list_element

242 function_arglist_nonbackup: function_arglist_common

243 | "optional?"

"scheme?"

function_arglist_nonbackup

post_event_nofinger

244 | "optional?"

"scheme?"

function_arglist_nonbackup

'-'

UNSIGNED

245 | "optional?"

"scheme?"

function_arglist_nonbackup

'-'

REAL

246 | "optional?"

"scheme?"

function_arglist_nonbackup

'-'

NUMBER_IDENTIFIER

247 | "optional?"

"scheme?"

function_arglist_nonbackup

embedded_scm_arg

248 | "optional?"

"scheme?"
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function_arglist_nonbackup

bare_number_common

249 | function_arglist_nonbackup_reparse

"(reparsed?)"

pitch_or_music

250 | function_arglist_nonbackup_reparse

"(reparsed?)"

multiplied_duration

251 | function_arglist_nonbackup_reparse

"(reparsed?)"

reparsed_rhythm

252 | function_arglist_nonbackup_reparse

"(reparsed?)"

bare_number_common

253 | function_arglist_nonbackup_reparse

"(reparsed?)"

SCM_ARG

254 | function_arglist_nonbackup_reparse

"(reparsed?)"

lyric_element_music

255 | function_arglist_nonbackup_reparse

"(reparsed?)"

symbol_list_arg

256 reparsed_rhythm: DURATION_ARG dots multipliers post_events

257 function_arglist_nonbackup_reparse: "optional?"

"scheme?"

function_arglist_nonbackup

SCM_IDENTIFIER

258 | "optional?"

"scheme?"

function_arglist_nonbackup

pitch

259 | "optional?"

"scheme?"

function_arglist_nonbackup

steno_tonic_pitch

260 | "optional?"

"scheme?"

function_arglist_nonbackup

STRING

261 | "optional?"

"scheme?"

function_arglist_nonbackup

SYMBOL

262 | "optional?"

"scheme?"

function_arglist_nonbackup

full_markup

263 | "optional?"

"scheme?"
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function_arglist_nonbackup

UNSIGNED

264 | "optional?"

"scheme?"

function_arglist_nonbackup

DURATION_IDENTIFIER

265 function_arglist_backup: function_arglist_common

266 | "optional?"

"scheme?"

function_arglist_backup

embedded_scm_arg

267 | "optional?"

"scheme?"

function_arglist_backup

post_event_nofinger

268 | "optional?"

"scheme?"

function_arglist_backup

pitch

269 | "optional?"

"scheme?"

function_arglist_backup

steno_tonic_pitch

270 | "optional?"

"scheme?"

function_arglist_backup

full_markup

271 | "optional?"

"scheme?"

function_arglist_backup

UNSIGNED

272 | "optional?"

"scheme?"

function_arglist_backup

REAL

273 | "optional?"

"scheme?"

function_arglist_backup

NUMBER_IDENTIFIER

274 | "optional?"

"scheme?"

function_arglist_backup

'-'

UNSIGNED

275 | "optional?"

"scheme?"

function_arglist_backup

'-'

REAL

276 | "optional?"

"scheme?"
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function_arglist_backup

'-'

NUMBER_IDENTIFIER

277 | "optional?"

"scheme?"

function_arglist_backup

DURATION_IDENTIFIER

278 | "optional?"

"scheme?"

function_arglist_backup

SCM_IDENTIFIER

279 | "optional?"

"scheme?"

function_arglist_backup

STRING

280 | "optional?"

"scheme?"

function_arglist_backup

SYMBOL

281 | function_arglist_backup

"(reparsed?)"

pitch_or_music

282 | function_arglist_backup

"(reparsed?)"

bare_number_common

283 | function_arglist_backup

"(reparsed?)"

multiplied_duration

284 | function_arglist_backup

"(reparsed?)"

reparsed_rhythm

285 | function_arglist_backup

"(reparsed?)"

symbol_list_arg

286 function_arglist: function_arglist_nonbackup

287 | "optional?"

"scheme?"

function_arglist_skip_nonbackup

"\default"

288 function_arglist_skip_nonbackup: function_arglist_nonbackup

289 | "optional?"

"scheme?"

function_arglist_skip_nonbackup

290 function_arglist_partial: "scheme?" function_arglist_optional

291 | "scheme?" function_arglist_partial_optional

292 | "optional?"

"scheme?"

function_arglist_nonbackup

293 | "optional?"
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"scheme?"

function_arglist_partial

294 function_arglist_partial_optional: "scheme?" function_arglist_optional

295 | "scheme?"

function_arglist_partial_optional

296 | "optional?"

"scheme?"

function_arglist_backup

297 | "optional?"

"scheme?"

function_arglist_partial_optional

298 function_arglist_common: EXPECT_NO_MORE_ARGS

299 | "scheme?"

function_arglist_optional

embedded_scm_arg

300 | "scheme?"

function_arglist_optional

bare_number_common

301 | "scheme?"

function_arglist_optional

post_event_nofinger

302 | "scheme?"

function_arglist_optional

'-'

NUMBER_IDENTIFIER

303 | function_arglist_common_reparse

"(reparsed?)"

SCM_ARG

304 | function_arglist_common_reparse

"(reparsed?)"

lyric_element_music

305 | function_arglist_common_reparse

"(reparsed?)"

pitch_or_music

306 | function_arglist_common_reparse

"(reparsed?)"

bare_number_common

307 | function_arglist_common_reparse

"(reparsed?)"

multiplied_duration

308 | function_arglist_common_reparse

"(reparsed?)"

reparsed_rhythm

309 | function_arglist_common_reparse

"(reparsed?)"

symbol_list_arg

310 function_arglist_common_reparse: "scheme?"

function_arglist_optional

SCM_IDENTIFIER
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311 | "scheme?"

function_arglist_optional

pitch

312 | "scheme?"

function_arglist_optional

steno_tonic_pitch

313 | "scheme?"

function_arglist_optional

STRING

314 | "scheme?"

function_arglist_optional

SYMBOL

315 | "scheme?"

function_arglist_optional

full_markup

316 | "scheme?"

function_arglist_optional

UNSIGNED

317 | "scheme?"

function_arglist_optional

DURATION_IDENTIFIER

318 | "scheme?"

function_arglist_optional

'-'

UNSIGNED

319 | "scheme?"

function_arglist_optional

'-'

REAL

320 function_arglist_optional: function_arglist_backup

321 | "optional?"

"scheme?"

function_arglist_skip_backup

"\default"

322 | function_arglist_skip_backup "(backed-up?)"

323 function_arglist_skip_backup: function_arglist_backup

324 | "optional?"

"scheme?"

function_arglist_skip_backup

325 music_function_call: MUSIC_FUNCTION function_arglist

326 optional_id: %empty

327 | '=' simple_string

329 lyric_mode_music: grouped_music_list

330 | MUSIC_IDENTIFIER

331 mode_changed_music: mode_changing_head grouped_music_list

332 | mode_changing_head_with_context
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optional_context_mods

grouped_music_list

333 mode_changing_head: "\notemode"

334 | "\drummode"

335 | "\figuremode"

336 | "\chordmode"

337 | "\lyricmode"

338 mode_changing_head_with_context: "\drums"

339 | "\figures"

340 | "\chords"

341 | "\lyrics"

342 context_change: "\change" symbol '=' simple_string

343 property_path: symbol_list_rev

344 property_operation: symbol '=' scalar

345 | "\unset" symbol

346 | "\override" revert_arg '=' scalar

347 | "\revert" revert_arg

348 revert_arg: revert_arg_backup "(backed-up?)" symbol_list_arg

349 revert_arg_backup: revert_arg_part

350 revert_arg_part: symbol_list_part

351 | revert_arg_backup

"(backed-up?)"

SCM_ARG

'.'

symbol_list_part

352 | revert_arg_backup

"(backed-up?)"

SCM_ARG

','

symbol_list_part

353 | revert_arg_backup

"(backed-up?)"

SCM_ARG

symbol_list_part

354 context_def_mod: "\consists"

355 | "\remove"

356 | "\accepts"

357 | "\defaultchild"

358 | "\denies"

359 | "\alias"

360 | "\type"

361 | "\description"

362 | "\name"
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363 context_mod: property_operation

364 | context_def_mod STRING

365 | context_def_mod SYMBOL

366 | context_def_mod embedded_scm

367 grob_prop_spec: symbol_list_rev

368 grob_prop_path: grob_prop_spec

369 | grob_prop_spec property_path

370 context_prop_spec: symbol_list_rev

371 simple_revert_context: symbol_list_part

372 music_property_def: "\override" grob_prop_path '=' scalar

373 | "\revert" simple_revert_context revert_arg

374 | "\set" context_prop_spec '=' scalar

375 | "\unset" context_prop_spec

376 string: STRING

377 | SYMBOL

378 | full_markup

379 text: STRING

380 | SYMBOL

381 | full_markup

382 | embedded_scm_bare

383 simple_string: STRING

384 | SYMBOL

385 | embedded_scm_bare

386 symbol: STRING

387 | SYMBOL

388 | embedded_scm_bare

389 scalar: embedded_scm_arg

390 | pitch_or_music

391 | SCM_IDENTIFIER

392 | bare_number

393 | '-' bare_number

394 | string

395 | symbol_list_part_bare '.' property_path

396 | symbol_list_part_bare ',' property_path

397 event_chord: simple_element post_events

398 | CHORD_REPETITION optional_notemode_duration post_events

399 | MULTI_MEASURE_REST optional_notemode_duration post_events

400 | tempo_event

401 | note_chord_element
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402 note_chord_element: chord_body optional_notemode_duration post_events

403 chord_body: "<" chord_body_elements ">"

404 | FIGURE_OPEN figure_list FIGURE_CLOSE

405 chord_body_elements: %empty

406 | chord_body_elements chord_body_element

407 chord_body_element: pitch_or_tonic_pitch

exclamations

questions

octave_check

post_events

408 | DRUM_PITCH post_events

409 | music_function_chord_body

410 | post_event

411 music_function_chord_body: music_function_call

412 | MUSIC_IDENTIFIER

413 | embedded_scm

414 event_function_event: EVENT_FUNCTION function_arglist

415 post_events: %empty

416 | post_events post_event

417 post_event_nofinger: direction_less_event

418 | script_dir music_function_call

419 | "--"

420 | "__"

421 | script_dir direction_reqd_event

422 | script_dir direction_less_event

423 | '^' fingering

424 | '_' fingering

425 post_event: post_event_nofinger

426 | '-' fingering

427 string_number_event: E_UNSIGNED

428 direction_less_event: string_number_event

429 | EVENT_IDENTIFIER

430 | tremolo_type

431 | event_function_event

432 direction_reqd_event: gen_text_def

433 | script_abbreviation

434 octave_check: %empty

435 | '=' quotes

436 quotes: %empty
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437 | sub_quotes

438 | sup_quotes

439 erroneous_quotes: quotes

440 sup_quotes: '\''

441 | sup_quotes '\''

442 sub_quotes: ','

443 | sub_quotes ','

444 steno_pitch: NOTENAME_PITCH quotes

445 steno_tonic_pitch: TONICNAME_PITCH quotes

446 pitch: steno_pitch

447 | PITCH_IDENTIFIER quotes

448 pitch_or_tonic_pitch: pitch

449 | steno_tonic_pitch

450 gen_text_def: full_markup

451 | STRING

452 | SYMBOL

453 | embedded_scm

454 fingering: UNSIGNED

455 script_abbreviation: '^'

456 | '+'

457 | '-'

458 | '!'

459 | ">"

460 | '.'

461 | '_'

462 script_dir: '_'

463 | '^'

464 | '-'

465 maybe_notemode_duration: %empty

466 | multiplied_duration

467 optional_notemode_duration: maybe_notemode_duration

468 steno_duration: UNSIGNED dots

469 | DURATION_IDENTIFIER dots

470 multiplied_duration: steno_duration multipliers

471 dots: %empty

472 | dots '.'
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473 multipliers: %empty

474 | multipliers '*' UNSIGNED

475 | multipliers '*' FRACTION

476 tremolo_type: ':'

477 | ':' UNSIGNED

478 bass_number: UNSIGNED

479 | STRING

480 | SYMBOL

481 | full_markup

482 | embedded_scm_bare

483 figured_bass_alteration: '-'

484 | '+'

485 | '!'

486 bass_figure: "_"

487 | bass_number

488 | bass_figure ']'

489 | bass_figure figured_bass_alteration

490 | bass_figure figured_bass_modification

491 figured_bass_modification: "\+"

492 | "\!"

493 | '/'

494 | "\\"

495 br_bass_figure: bass_figure

496 | '[' bass_figure

497 figure_list: %empty

498 | figure_list br_bass_figure

499 optional_rest: %empty

500 | "\rest"

501 pitch_or_music: pitch

exclamations

questions

octave_check

maybe_notemode_duration

erroneous_quotes

optional_rest

post_events

502 | new_chord post_events

503 simple_element: DRUM_PITCH optional_notemode_duration

504 | RESTNAME optional_notemode_duration

505 lyric_element: full_markup
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506 | SYMBOL

507 | STRING

508 | LYRIC_ELEMENT

509 lyric_element_music: lyric_element

optional_notemode_duration

post_events

510 new_chord: steno_tonic_pitch maybe_notemode_duration

511 | steno_tonic_pitch

optional_notemode_duration

chord_separator

chord_items

512 chord_items: %empty

513 | chord_items chord_item

514 chord_separator: ":"

515 | "^"

516 | "/" steno_tonic_pitch

517 | "/+" steno_tonic_pitch

518 chord_item: chord_separator

519 | step_numbers

520 | CHORD_MODIFIER

521 step_numbers: step_number

522 | step_numbers '.' step_number

523 step_number: UNSIGNED

524 | UNSIGNED '+'

525 | UNSIGNED "-"

526 tempo_range: unsigned_number

527 | unsigned_number '-' unsigned_number

528 number_expression: number_expression '+' number_term

529 | number_expression '-' number_term

530 | number_term

531 number_term: number_factor

532 | number_factor '*' number_factor

533 | number_factor '/' number_factor

534 number_factor: '-' number_factor

535 | bare_number

536 bare_number_common: REAL

537 | NUMBER_IDENTIFIER

538 | REAL NUMBER_IDENTIFIER

539 bare_number: bare_number_common
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540 | UNSIGNED

541 | UNSIGNED NUMBER_IDENTIFIER

542 unsigned_number: UNSIGNED

543 | NUMBER_IDENTIFIER

544 | embedded_scm

545 exclamations: %empty

546 | exclamations '!'

547 questions: %empty

548 | questions '?'

550 full_markup_list: "\markuplist" markup_list

551 markup_mode: "\markup"

552 markup_mode_word: markup_mode markup_word

553 full_markup: markup_mode markup_top

554 | markup_mode_word

555 partial_markup: markup_mode markup_partial_function "\etc"

556 markup_top: markup_list

557 | markup_head_1_list simple_markup

558 | simple_markup_noword

560 markup_scm: embedded_scm "(backed-up?)"

561 markup_list: markup_composed_list

562 | markup_uncomposed_list

563 markup_uncomposed_list: markup_braced_list

564 | markup_command_list

565 | markup_scm MARKUPLIST_IDENTIFIER

567 | "\score-lines" '{' score_body '}'

568 markup_composed_list: markup_head_1_list markup_uncomposed_list

569 markup_braced_list: '{' markup_braced_list_body '}'

570 markup_braced_list_body: %empty

571 | markup_braced_list_body markup

572 | markup_braced_list_body markup_list

573 markup_command_list: MARKUP_LIST_FUNCTION markup_command_list_arguments

574 markup_command_basic_arguments: "markup-list?"

markup_command_list_arguments

markup_list

575 | "scheme?"



Appendix A: LilyPond grammar 209

markup_command_list_arguments

embedded_scm

576 | "scheme?"

markup_command_list_arguments

STRING

577 | EXPECT_NO_MORE_ARGS

578 markup_command_list_arguments: markup_command_basic_arguments

579 | "markup?"

markup_command_list_arguments

markup

580 markup_partial_function: MARKUP_FUNCTION markup_arglist_partial

581 | markup_head_1_list

MARKUP_FUNCTION

markup_arglist_partial

582 markup_arglist_partial: "markup?" markup_arglist_partial

583 | "scheme?" markup_arglist_partial

584 | "markup?" markup_command_list_arguments

585 | "scheme?" markup_command_list_arguments

586 markup_head_1_item: MARKUP_FUNCTION

"markup?"

markup_command_list_arguments

587 markup_head_1_list: markup_head_1_item

588 | markup_head_1_list markup_head_1_item

589 markup_word: STRING

590 | SYMBOL

591 simple_markup: markup_word

592 | simple_markup_noword

594 simple_markup_noword: "\score" '{' score_body '}'

595 | MARKUP_FUNCTION markup_command_basic_arguments

596 | markup_scm MARKUP_IDENTIFIER

597 markup: markup_head_1_list simple_markup

598 | simple_markup

Terminals, with rules where they appear

"#{" (340) 3

"(backed-up?)" (335) 182 322 348 351 352 353 560

"(reparsed?)" (336) 249 250 251 252 253 254 255 281 282 283 284 285

303 304 305 306 307 308 309

"-" (320) 525

"--" (268) 419
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"/" (321) 516

"/+" (317) 517

":" (319) 514

"<" (322) 403

"<<" (324) 192

">" (323) 403 459

">>" (325) 192

"\!" (327) 492

"\+" (328) 491

"\\" (326) 494

"\accepts" (273) 356

"\addlyrics" (262) 209 210

"\alias" (274) 359

"\alternative" (260) 188

"\book" (275) 116

"\bookpart" (276) 130

"\change" (277) 342

"\chordmode" (278) 336

"\chords" (279) 340

"\consists" (280) 354

"\context" (281) 108 207

"\default" (282) 287 321

"\defaultchild" (283) 357

"\denies" (284) 358

"\description" (285) 361

"\drummode" (286) 334

"\drums" (287) 338

"\etc" (288) 90 555

"\figuremode" (289) 335

"\figures" (290) 339

"\header" (291) 62

"\layout" (293) 157

"\lyricmode" (294) 337

"\lyrics" (295) 341

"\lyricsto" (296) 214 215

"\markup" (297) 551

"\markuplist" (298) 550

"\midi" (299) 156

"\name" (300) 362

"\new" (316) 208

"\notemode" (301) 333

"\override" (302) 101 103 346 372

"\paper" (303) 155

"\remove" (304) 355

"\repeat" (259) 187 188

"\rest" (305) 500

"\revert" (306) 347 373

"\score" (307) 143 594

"\score-lines" (308) 567

"\sequential" (309) 189

"\set" (310) 102 104 374

"\simultaneous" (311) 191
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"\tempo" (312) 168 169 170

"\type" (313) 360

"\unset" (314) 345 375

"\version-error" (292) 8 57

"\with" (315) 197 198

"^" (318) 515

"_" (331) 486

"__" (269) 420

"end of input" (0) 0

"markup-list?" (337) 574

"markup?" (333) 579 582 584 586

"optional?" (338) 97 98 99 243 244 245 246 247 248 257 258 259 260

261 262 263 264 266 267 268 269 270 271 272 273 274 275 276 277

278 279 280 287 289 292 293 296 297 321 324

"scheme?" (334) 94 95 96 97 98 99 243 244 245 246 247 248 257 258 259

260 261 262 263 264 266 267 268 269 270 271 272 273 274 275 276

277 278 279 280 287 289 290 291 292 293 294 295 296 297 299 300

301 302 310 311 312 313 314 315 316 317 318 319 321 324 575 576

583 585

'!' (33) 458 485 546

'*' (42) 474 475 532

'+' (43) 456 484 524 528

',' (44) 69 74 232 235 352 396 442 443

'-' (45) 47 244 245 246 274 275 276 302 318 319 393 426 457 464 483

527 529 534

'.' (46) 21 68 73 231 234 351 395 460 472 522

'/' (47) 493 533

':' (58) 476 477

'=' (61) 67 68 69 70 101 102 103 104 168 169 215 327 342 344 346 372

374 435

'?' (63) 548

'[' (91) 496

'\'' (39) 440 441

']' (93) 488

'^' (94) 423 455 463

'_' (95) 424 461 462

'{' (123) 62 108 116 130 143 161 174 197 567 569 594

'}' (125) 62 108 116 130 143 154 174 197 567 569 594

BOOK_IDENTIFIER (341) 12 118 132

CHORD_MODIFIER (342) 520

CHORD_REPETITION (343) 398

COMPOSITE (261)

DRUM_PITCH (344) 408 503

DURATION_ARG (345) 256

DURATION_IDENTIFIER (270) 264 277 317 469

E_UNSIGNED (265) 427

error (256) 7 56 129 142 145 167 173

EVENT_FUNCTION (267) 92 95 98 414

EVENT_IDENTIFIER (266) 429

EXPECT_NO_MORE_ARGS (339) 298 577

FIGURE_CLOSE (329) 404

FIGURE_OPEN (330) 404
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FRACTION (346) 29 84 475

LOOKUP_IDENTIFIER (347) 20 21

LYRIC_ELEMENT (348) 508

MARKUP_FUNCTION (349) 580 581 586 595

MARKUP_IDENTIFIER (351) 596

MARKUP_LIST_FUNCTION (350) 573

MARKUPLIST_IDENTIFIER (352) 565

MULTI_MEASURE_REST (332) 399

MUSIC_FUNCTION (353) 91 94 97 325

MUSIC_IDENTIFIER (354) 200 226 330 412

NOTENAME_PITCH (355) 444

NUMBER_IDENTIFIER (271) 49 246 273 276 302 537 538 541 543

PITCH_IDENTIFIER (356) 447

PREC_BOT (258)

PREC_TOP (272)

REAL (264) 245 272 275 319 536 538

RESTNAME (357) 504

SCM_ARG (358) 27 253 303 351 352 353

SCM_FUNCTION (359) 46 93 96 99

SCM_IDENTIFIER (360) 23 24 257 278 310 391

SCM_TOKEN (361) 17 22 28 60 125 138 164

STRING (362) 65 238 260 279 313 364 376 379 383 386 451 479 507 576

589

SYMBOL (365) 66 240 261 280 314 365 377 380 384 387 452 480 506 590

SYMBOL_LIST (363) 230 231 232

TONICNAME_PITCH (364) 445

UNARY_MINUS (366)

UNSIGNED (263) 49 239 244 263 271 274 316 318 454 468 474 477 478 523

524 525 540 541 542

Nonterminals, with rules where they appear

assignment (148)

on left: 67 68 69 70, on right: 6 59 162

assignment_id (147)

on left: 65 66, on right: 67 68 69

bare_number (298)

on left: 539 540 541, on right: 392 393 535

bare_number_common (297)

on left: 536 537 538, on right: 48 248 252 282 300 306 539

basic_music (195)

on left: 211 212 213 214 215, on right: 216 222 224

bass_figure (278)

on left: 486 487 488 489 490, on right: 488 489 490 495 496

bass_number (276)

on left: 478 479 480 481 482, on right: 487

book_block (157)

on left: 116, on right: 10 36 78

book_body (158)

on left: 117 118 119 120 121 122 123 124 125 126 128 129, on right:

116 119 120 121 122 123 124 125 126 128 129
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bookpart_block (160)

on left: 130, on right: 11 37 79 120

bookpart_body (161)

on left: 131 132 133 134 135 136 137 138 139 141 142, on right:

130 133 134 135 136 137 138 139 141 142

br_bass_figure (280)

on left: 495 496, on right: 498

braced_music_list (177)

on left: 174, on right: 188 189 190 191

chord_body (245)

on left: 403 404, on right: 402

chord_body_element (247)

on left: 407 408 409 410, on right: 406

chord_body_elements (246)

on left: 405 406, on right: 403 406

chord_item (290)

on left: 518 519 520, on right: 513

chord_items (288)

on left: 512 513, on right: 511 513

chord_separator (289)

on left: 514 515 516 517, on right: 511 518

composite_music (198)

on left: 222 223 224, on right: 14 111 122 135 186

context_change (225)

on left: 342, on right: 195

context_def_mod (231)

on left: 354 355 356 357 358 359 360 361 362, on right: 364 365

366

context_def_spec_block (153)

on left: 108, on right: 35 81 160

context_def_spec_body (156)

on left: 112 113 114 115, on right: 108 113 114 115

context_mod (232)

on left: 363 364 365 366, on right: 113 205

context_mod_arg (154)

on left: 109 111, on right: 115 206

context_mod_list (192)

on left: 204 205 206, on right: 197 205 206

context_modification (187)

on left: 197 198, on right: 32 89 114 203

context_modification_arg (189)

on left: 199 200, on right: 198

context_modification_mods_list (191)

on left: 202 203, on right: 201 203

context_prefix (193)

on left: 207 208, on right: 219 220 221

context_prop_spec (235)

on left: 370, on right: 102 104 374 375

contextable_music (196)

on left: 216 217 218, on right: 219 220

contexted_basic_music (197)

on left: 219 220 221, on right: 221 223
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direction_less_event (254)

on left: 428 429 430 431, on right: 417 422

direction_reqd_event (255)

on left: 432 433, on right: 421

dots (273)

on left: 471 472, on right: 256 468 469 472

embedded_lilypond (142)

on left: 50 51 52 53 54 55 56 57, on right: 3 57

embedded_lilypond_number (141)

on left: 47 48 49, on right: 47 52

embedded_scm (138)

on left: 40 41 42, on right: 86 109 146 184 199 366 413 453 544

560 575

embedded_scm_active (136)

on left: 24 25 26, on right: 18 61 126 139 163

embedded_scm_arg (139)

on left: 43 44 45, on right: 247 266 299 389

embedded_scm_bare (135)

on left: 22 23, on right: 40 237 382 385 388 482

embedded_scm_bare_arg (137)

on left: 27 28 29 30 31 32 33 34 35 36 37 38 39, on right: 43

erroneous_quotes (258)

on left: 439, on right: 501

event_chord (243)

on left: 397 398 399 400 401, on right: 193 218

event_function_event (249)

on left: 414, on right: 431

exclamations (300)

on left: 545 546, on right: 407 501 546

figure_list (281)

on left: 497 498, on right: 404 498

figured_bass_alteration (277)

on left: 483 484 485, on right: 489

figured_bass_modification (279)

on left: 491 492 493 494, on right: 490

fingering (266)

on left: 454, on right: 423 424 426

full_markup (306)

on left: 553 554, on right: 15 123 136 262 270 315 378 381 450

481 505

full_markup_list (302)

on left: 550, on right: 16 31 88 124 137

function_arglist (210)

on left: 286 287, on right: 46 325 414

function_arglist_backup (209)

on left: 265 266 267 268 269 270 271 272 273 274 275 276 277 278

279 280 281 282 283 284 285, on right: 266 267 268 269 270 271

272 273 274 275 276 277 278 279 280 281 282 283 284 285 296 320

323

function_arglist_common (214)

on left: 298 299 300 301 302 303 304 305 306 307 308 309, on right:

242 265
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function_arglist_common_reparse (215)

on left: 310 311 312 313 314 315 316 317 318 319, on right: 303

304 305 306 307 308 309

function_arglist_nonbackup (206)

on left: 242 243 244 245 246 247 248 249 250 251 252 253 254 255,

on right: 97 98 99 243 244 245 246 247 248 257 258 259 260 261

262 263 264 286 288 292

function_arglist_nonbackup_reparse (208)

on left: 257 258 259 260 261 262 263 264, on right: 249 250 251

252 253 254 255

function_arglist_optional (216)

on left: 320 321 322, on right: 94 95 96 290 294 299 300 301 302

310 311 312 313 314 315 316 317 318 319

function_arglist_partial (212)

on left: 290 291 292 293, on right: 91 92 93 293

function_arglist_partial_optional (213)

on left: 294 295 296 297, on right: 291 295 297

function_arglist_skip_backup (217)

on left: 323 324, on right: 321 322 324

function_arglist_skip_nonbackup (211)

on left: 288 289, on right: 287 289

gen_text_def (265)

on left: 450 451 452 453, on right: 432

grob_prop_path (234)

on left: 368 369, on right: 101 103 372

grob_prop_spec (233)

on left: 367, on right: 368 369

grouped_music_list (200)

on left: 228 229, on right: 227 329 331 332

header_block (145)

on left: 64, on right: 9 33 76

identifier_init (149)

on left: 71 72 73 74 75, on right: 67 68 69 70

identifier_init_nonumber (150)

on left: 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90, on right:

51 71

lilypond (132)

on left: 4 5 6 7 8, on right: 1 5 6 7 8

lilypond_header (144)

on left: 62, on right: 64 128 141 152

lilypond_header_body (143)

on left: 58 59 60 61, on right: 59 60 61 62

lookup (134)

on left: 20 21, on right: 26 39 42

lyric_element (285)

on left: 505 506 507 508, on right: 509

lyric_element_music (286)

on left: 509, on right: 176 182 254 304

lyric_mode_music (220)

on left: 329 330, on right: 209 210 214 215

markup (328)

on left: 597 598, on right: 571 579
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markup_arglist_partial (321)

on left: 582 583 584 585, on right: 580 581 582 583

markup_braced_list (315)

on left: 569, on right: 563

markup_braced_list_body (316)

on left: 570 571 572, on right: 569 571 572

markup_command_basic_arguments (318)

on left: 574 575 576 577, on right: 578 595

markup_command_list (317)

on left: 573, on right: 564

markup_command_list_arguments (319)

on left: 578 579, on right: 573 574 575 576 579 584 585 586

markup_composed_list (314)

on left: 568, on right: 561

markup_head_1_item (322)

on left: 586, on right: 587 588

markup_head_1_list (323)

on left: 587 588, on right: 557 568 581 588 597

markup_list (311)

on left: 561 562, on right: 550 556 572 574

markup_mode (304)

on left: 551, on right: 105 552 553 555

markup_mode_word (305)

on left: 552, on right: 70 554

markup_partial_function (320)

on left: 580 581, on right: 105 555

markup_scm (309)

on left: 560, on right: 565 596

markup_top (308)

on left: 556 557 558, on right: 553

markup_uncomposed_list (312)

on left: 563 564 565 567, on right: 562 568

markup_word (324)

on left: 589 590, on right: 552 591

maybe_notemode_duration (269)

on left: 465 466, on right: 467 501 510

mode_changed_music (222)

on left: 331 332, on right: 225

mode_changing_head (223)

on left: 333 334 335 336 337, on right: 331

mode_changing_head_with_context (224)

on left: 338 339 340 341, on right: 332

multiplied_duration (272)

on left: 470, on right: 54 183 250 283 307 466

multipliers (274)

on left: 473 474 475, on right: 256 470 474 475

music (178)

on left: 175 176 177, on right: 147 179 187 188

music_assign (182)

on left: 185 186, on right: 45 82 159 175

music_bare (199)

on left: 225 226 227, on right: 213
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music_embedded (180)

on left: 179 180 181 182 183, on right: 55 172

music_embedded_backup (181)

on left: 184, on right: 181 182

music_function_call (218)

on left: 325, on right: 211 411 418

music_function_chord_body (248)

on left: 411 412 413, on right: 409

music_list (176)

on left: 171 172 173, on right: 55 172 173 174 192

music_or_context_def (172)

on left: 159 160, on right: 166

music_property_def (237)

on left: 372 373 374 375, on right: 194

new_chord (287)

on left: 510 511, on right: 502

new_lyrics (194)

on left: 209 210, on right: 210 219 224

note_chord_element (244)

on left: 402, on right: 401

number_expression (294)

on left: 528 529 530, on right: 72 528 529

number_factor (296)

on left: 534 535, on right: 531 532 533 534

number_term (295)

on left: 531 532 533, on right: 528 529 530

octave_check (256)

on left: 434 435, on right: 407 501

optional_context_mods (190)

on left: 201, on right: 207 208 209 210 332

optional_id (219)

on left: 326 327, on right: 207 208

optional_notemode_duration (270)

on left: 467, on right: 398 399 402 503 504 509 511

optional_rest (282)

on left: 499 500, on right: 501

output_def (169)

on left: 154, on right: 19 38 80 148 153

output_def_body (173)

on left: 161 162 163 164 166 167, on right: 154 162 163 164 166

167

output_def_head (170)

on left: 155 156 157, on right: 158

output_def_head_with_mode_switch (171)

on left: 158, on right: 161

paper_block (168)

on left: 153, on right: 119 133

partial_function (152)

on left: 100 101 102 103 104 105 106 107, on right: 90 94 95 96

97 98 99 103 104

partial_function_scriptable (151)

on left: 91 92 93 94 95 96 97 98 99, on right: 100 106
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partial_markup (307)

on left: 555, on right: 30 87

pitch (263)

on left: 446 447, on right: 258 268 311 448 501

pitch_as_music (179)

on left: 178, on right: 177 217

pitch_or_music (283)

on left: 501 502, on right: 83 178 249 281 305 390

pitch_or_tonic_pitch (264)

on left: 448 449, on right: 407

post_event (252)

on left: 425 426, on right: 53 180 410 416

post_event_nofinger (251)

on left: 417 418 419 420 421 422 423 424, on right: 75 243 267

301 425

post_events (250)

on left: 415 416, on right: 54 75 183 256 397 398 399 402 407 408

416 501 502 509

property_operation (227)

on left: 344 345 346 347, on right: 363

property_path (226)

on left: 343, on right: 68 69 73 74 369 395 396

questions (301)

on left: 547 548, on right: 407 501 548

quotes (257)

on left: 436 437 438, on right: 435 439 444 445 447

reparsed_rhythm (207)

on left: 256, on right: 251 284 308

repeated_music (183)

on left: 187 188, on right: 212

revert_arg (228)

on left: 348, on right: 346 347 373

revert_arg_backup (229)

on left: 349, on right: 348 351 352 353

revert_arg_part (230)

on left: 350 351 352 353, on right: 349

scalar (242)

on left: 389 390 391 392 393 394 395 396, on right: 344 346 372

374

scm_function_call (140)

on left: 46, on right: 25 41 44

score_block (163)

on left: 143, on right: 13 34 77 121 134

score_body (164)

on left: 144 145, on right: 143 145 567 594

score_item (165)

on left: 146 147 148, on right: 150

score_items (166)

on left: 149 150 152, on right: 144 150 152

script_abbreviation (267)

on left: 455 456 457 458 459 460 461, on right: 433

script_dir (268)
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on left: 462 463 464, on right: 105 106 107 418 421 422

sequential_music (184)

on left: 189 190, on right: 229

simple_element (284)

on left: 503 504, on right: 397

simple_markup (325)

on left: 591 592, on right: 557 597 598

simple_markup_noword (326)

on left: 594 595 596, on right: 558 592

simple_music (186)

on left: 193 194 195, on right: 185

simple_revert_context (236)

on left: 371, on right: 373

simple_string (240)

on left: 383 384 385, on right: 187 188 214 215 327 342

simultaneous_music (185)

on left: 191 192, on right: 228

start_symbol (130)

on left: 1 3, on right: 0

steno_duration (271)

on left: 468 469, on right: 168 169 470

steno_pitch (261)

on left: 444, on right: 446

steno_tonic_pitch (262)

on left: 445, on right: 259 269 312 449 510 511 516 517

step_number (292)

on left: 523 524 525, on right: 521 522

step_numbers (291)

on left: 521 522, on right: 519 522

string (238)

on left: 376 377 378, on right: 85 394

string_number_event (253)

on left: 427, on right: 428

sub_quotes (260)

on left: 442 443, on right: 437 443

sup_quotes (259)

on left: 440 441, on right: 438 441

symbol (241)

on left: 386 387 388, on right: 207 208 215 342 344 345

symbol_list_arg (201)

on left: 230 231 232, on right: 255 285 309 348

symbol_list_element (204)

on left: 238 239, on right: 241

symbol_list_part (203)

on left: 236 237, on right: 233 234 235 350 351 352 353 371

symbol_list_part_bare (205)

on left: 240 241, on right: 73 74 236 395 396

symbol_list_rev (202)

on left: 233 234 235, on right: 21 231 232 234 235 343 367 370

tempo_event (175)

on left: 168 169 170, on right: 400

tempo_range (293)
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on left: 526 527, on right: 168 169

text (239)

on left: 379 380 381 382, on right: 169 170

toplevel_expression (133)

on left: 9 10 11 12 13 14 15 16 17 18 19, on right: 5

tremolo_type (275)

on left: 476 477, on right: 430

unsigned_number (299)

on left: 542 543 544, on right: 187 188 526 527
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Appendix B GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c⃝ 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

http://fsf.org/
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A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
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covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
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Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.
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In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.
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Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See http://

www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/
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ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.
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